Equipotential Energy Exchange Depends on Density of Matter

Jakub Czajko

Abstract


Abstract: Potential energy exchanged for work done by radial/center-bound gravitational force field along equipotential surfaces (where the radial potential remains unchanged by definition), depends also on density of matter of the source mass that is responsible for generating the locally dominant field. To the extent that equipotential hence nonradial parts of trajectory paths (of the objects that move within the field) are exposed to the (nonrotating) field’s influence, the moving objects’ energy is lost (regardless of direction of the nonradial part of their motion) and transferred to the field. Mathematically derived, with the use of (new) synthetic mathematics, a new law governing nonradial exchange of potential energy generalizes the previous law that has been derived from physical considerations and had already been confirmed by several experiments and observations.


Keywords


Potential energy; Work done; Nonradial effects; Radial/center-bound gravitational field

Full Text:

PDF

References


Beiser, A. (1973) Concepts of modern physics. New York: McGraw-Hill.
Birkhoff, G. (Ed.) (1973). A source book in classical analysis. Cambridge, MA: Harvard Univ. Press.
Bohr, N. (1956). Mathematics and natural philosophy. Sci. Mon., 82, 85.
Castillo, E., Iglesias, A. & Ruiz-Cobo, R. (2005). Functional equations in applied sciences. Amsterdam: Elsevier.
Choquet, G. (1969). Geometry in modern setting. Paris: Hermann.
Czajko, J. (2000). On conjugate complex time II: Equipotential effect of gravity retrodicts differential and predicts apparent anomalous rotation of the Sun. Chaos, Solit. Fract., 11, 2001-2016.
Czajko, J. (2004). Elie Cartan and Pan-Geometry of Multispatial Hyperspace. Chaos, Solit. Fract., 19, 479-502.
Czajko, J. (2004a). On the intrinsic gravitational repulsion. Chaos, Solit. Fract., 20, 683-700.
Czajko, J. (2011) Radial and nonradial effects in Frenet frame. Appl. Phys. Res., 3(1), 2-7.
Czajko, J. (2013). Path-independence theorem is invalid in center-bound force fields. Stud. Math. Sci. [submitted for publication in this journal].
Delègue, L. (1908). Essai sur les principes des sciences mathématiques. Paris.
Dyson, F. (1921). Relativity and the eclipse observation of May 1919. Nature, 106, 786-787.
Einstein, A. (1923). The foundations of the general theory of relativity. In H .A. Lorentz et al. (Eds.), The principle of relativity (pp.111-164). New York: Dover.
Feferman, S. (1994, May 13). Deciding the undecidable: Wrestling with Hilbert’s problems (Lecture given at Stanford University); Retrieved from http://math.stanford.edu/~feferman/papers/deciding.pdf
Gelfand, I. M., & Fomin, S. V. (2000). Calculus of variations. Mineola, NY: Dover.
Griffel, D. H. (2002). Applied functional analysis. Mineola, NY: Dover.
Hawking, S. W., & Ellis, G. F. R. (1973). The large scale structure of space-time. Cambridge: Cambridge Univ. Press.
Hilbert, D. (1992). Natur und mathematisches Erkennen. Basel: Birkhäuser Verlag.
Hilbert, D., Von Neumann, J., & Nordheim, L. (1927) Über die grundlagen der quantenmechanik. Math. Ann., 98, 1-30.
Kellog, O. D. (1929). Foundations of potential theory. Berlin: Springer.
Lorenzen, P. (1951). Die widerspruchsfreiheit der klassischen analysis. Math. Z., 54, 1-24.
Melosh, H. J., Andrew, M. F., Johnson, B. C., Blair, D. M., Andrews-Hanna, J. C., Neumann, G. A., …, Zuber, M. T. (2013). The origin of lunar mascon basins. Science, 340, 1552-1555.
Merat, P. (1974). Observed deflection of light by the sun as a function of solar distance. Astron. Astrophys., 32, 471-475.
Resnick, M. D. (1980). Frege and the philosophy of mathematics. Ithaca, NY: Cornell Univ. Press.
Riesz, F., & Nagy, B. S. (1990). Functional analysis. New York: Dover.
Ryder, L. H. (1996). Quantum Field Theory. Cambridge: Cambridge Univ. Press.
Sadeh, D., Knowles, S. H., & Yaplee, B. S. (1968). Search for a frequency shift of the 21-centimeter line from Taurus a near occultation by Sun. Science, 159, 307-308.
Sadeh, D., Knowles, S., & Au, B. (1968). The effect of mass on frequency. Science, 161, 567-569.
Smart, J. R. (1967) Introductory geometry: An informal approach. Belmont: Brooks/Cole, p.181.
Szekeres, G. (1968). Effect of gravitation on frequency. Nature, 220, 1116-1118.
Wang, H. (1981). Popular lectures on mathematical logic. New York: Van Nostrand Reinhold.
Weast, R. C. (Ed.) (1970). Handbook of chemistry and physics (51st ed.). Cleveland, OH: The Chemical Rubber Co..
Whitehead, A. N., & Russell, B. (1968) Principia mathematica I. Cambridge: Cambridge Univ. Press.
Zeidler, E. (1995). Applied functional analysis: Main principles and their applications. New York: Springer.
Zubov, V. I. (1964). Methods of A. M. Lyapunov and their applications. Groningen: Noordhoff.




DOI: http://dx.doi.org/10.3968/j.sms.1923845220130702.2752

DOI (PDF): http://dx.doi.org/10.3968/g5336

Refbacks

  • There are currently no refbacks.


Copyright (c)




Share us to:   


Reminder

If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the CATEGORIES, or JOURNALS A-Z on the right side of the "HOME".


We only use three mailboxes as follows to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
caooc@hotmail.com; sms@cscanada.net; sms@cscanada.org

 Articles published in Studies in Mathematical Sciences are licensed under Creative Commons Attribution 4.0 (CC-BY).

 STUDIES IN MATHEMATICAL SCIENCES Editorial Office

Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.

Telephone: 1-514-558 6138

Http://www.cscanada.net
Http://www.cscanada.org
E-mail:caooc@hotmail.com

Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures