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Abstract: The paper describes a mathematical model to identify the
conditions of stability for a two stage nested queue model. We envisioned
the two stages as two stations in a hospital that a patient passes through
before completing service. In the first station there are two servers (i.e,,
nurses) which attend to the patient. When a patient arrives to the first
station he/she is served by one of the two servers, the server serves
the patient and stays with the customer until the service in the second
station of the model is completed. In the second station, another server
(i.e., doctor) attends to the customer with the cooperation of first station
server. The service rates of the servers and arrival rates of the patients
follow exponential distribution. The mathematical model is also used
to determine the conditions that allow the patients in system to be
served effectively. To estimate the conditions of stability, the steady state
probabilities have been calculated and stability behavior has been given
for special cases.
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1. INTRODUCTION

“A nested queueing system is a hierarchical system of multiple queues such
that service demand in one queue is created by a subset of the units in the
system of another queue higher in the hierarchy of possibly providing an
entirely different service” (Modi, 1974, p.220). A nested queue can be found
in many manufacturing and service systems, including a GI (Gastrointestinal)
unit of a hospital which motivated this research. The study determines the best
conditions for the nested queue system to provide service for the customers or
we have called this effective service. The conditions derived in this analysis give
information to policy makers in a hospital setting to determine.

a. The maximum number of patients that a nested queue model can service
with pre-determined arrival rate of patients and service rates of the servers.

b. The best allocation of arrival rates for patients in a nested queue system
where the policy makers have determined a fixed capacity of patients and
pre-determined service rates of the servers.

c. The best services rates for the servers, given pre-determined system
capacity and arrival rates of the patients.

The best conditions of service is achieved by determining the stationary state
probabilities, (P;), in the model for different parameters of the system. When
the values of P, are found to be greater than zero the nested queue system is
considered stable and we can confirm the best conditions for service. When P,
is equal to zero we say the nested queue system is unstable and the conditions of
service to the patients should not be considered.

The stability analysis can be used by policy makers for purposes of designing
nested queue systems where the importance is crowd control and efficient usage
of resources.
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a nurse time
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Figure 1
Diagram Depicting the Flow of the Patients Through the Two Stations
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The nested queue system has two stations that a patient passes through to
complete the service. The first station has two servers (nurses) while the second
station consists of one server (doctor).

Flow of the patient is as follows:

a. When a patient arrives at the first station, he/she is served by one of the
two nurses.

b. After completing the service in the first station the patient moves to the
second station accompanied by the nurse. In the second station the doctor
attends to the patient with the help of the nurse (therefore the nurse and doctor
are both busy at the second station).

c. In the meantime if another patient arrives to the system he/she will receive
service by the second nurse. If service is completed first by the second nurse
in the first station before the service is completed by the nurse and doctor at
the second station, the nurse and the patient in the first station do not proceed
to the second station for further service. At this instant the queueing system is
blocked. When the queueing system is blocked no other can get new service and
the patients have to wait. Figure 1 depicts the flow of the patient through the
two stations. In this queueing system the service of the nurse is nested into the
service of the doctor.

The nested queue model was first described by Modi (1974) who analyzed
the air traffic control (ATC) sector as a nested queue model. Modi applied the
model for the interaction between the airplane traffic and the control room
communications. Modi’s model consisted of two stages, in which the first stage
consisted of multiple servers in parallel with the second stage having one
server. The first stage of Modi's model consisted of S number of parallel servers
receiving messages about transitting of planes in an ATC Sector. The second stage
of the Modi’s nested queue model consisted of a server that provids messages to
the aircraft giving information on clearance for the aircraft and course guidance
to move through the ATC sector. Modi’s case dealt with the service demand of
the second stage queue system being created by a subset of the units in the
first queue system. If the first queue system had reached capacity, the second
queue system still served but the planes were not allowed into the first system
and would need to wait. The paper studies how the operating characteristics of
the second system changes with the parameters of the first. This nested queue
model has blocking.

The concept of blocking in Queueing Networks has been studied extensively
by Perros (1994). Perros and Foster (1980) studied the blocking process for
two queuing systems, a two station and a three station queueing networks. For
the two station queue systems the analysis was done for two model types. The
first model was a two station queue network where each station had a single
server, and the second was a two station queue network where the first station
consisted of “n” number of symmetrical servers in parallel and one server in
the second station. In the three station network model, the first station had “n”
symmetrical servers, the second station had two servers and the third station
had one server. Perros and Foster (1980) have considered a model where the
first station server is saturated (the server in the first station becomes saturated,
when working 100% of the time) and the capacity of the waiting area is infinite.
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The nested queue model is similar to the Perros and Foster model. Just like
the Perros and Foster model blocking is also considered in the nested queue
model.

Grassmann and Tavakoli (2005) have also described with a system with
moving servers. They have defined a two station model which has one server
in each station. The first station has a queue with infinite capacity while the
second station has a finite capacity. The model has been studied under the
assumption that should a server be idle, he/she can move to the other busy
station and work with the server in that station (allowing the servers to
cooperate and work together). In this model if server 1 is idle it helps server 2
to attend to the customers, which in turn increases the service rate of server 2
at the second station. Similarly if server 2 is idle, it helps server 1, which then
increases the rate at the first service station. The same concept of cooperation
of servers has also seen in the nested queue model presented in this paper.

2. FORMULATION OF THE PROBLEM

2.1 Model Description

The goal of the analysis is to find the condition of stability for the model as
described above in Figure 1. Figure 2 depicts the two station nested queue
model, where the first station has two servers and the second station has
only one server. System has the capacity of K patients. At time t, the patient
V arrives to the facility at B with finite capacity (M) (M includes the number
of patients waiting to receive service at B and also receiving service at C).
Patient A finds two nurses (N1 and N2) at service area (C). Once the patient is
attended by one nurse, N1, they both move to station 2. In the second station,
if the doctor (DC) is available, patient A receives service immediately. While
patient A is with the doctor (DC) (at service area (D)), the nurse N1 is still
attending to the patient A.

Consider the next patient A, at time t,, arrives at the facility B where the
nurse N2 attends to the patient. Once the service is completed at area C, the
nurse N2 and patient A, would move to area D. As the doctor is busy with
patient A, nurse N2 and patient A, have to wait at the area C. When nurse N2
is waiting in area C, the system is blocked (when a system is blocked no other
patient is served and any new patients have to wait). In the second station only
one patient can be served at a time. Let N be the capacity of the second station.

In this model once system capacity K (which equal to M+N) is reached, no
other patients are allowed into the system.

The arrival of the customers to the first station is assumed to be Poisson
distribution (of rate A) and service times in each station are exponentially
distributed with the rates p; and u, respectively. The customers are served
on first come first basis. Since let P, , be the steady state probability of the
system in the state (m,n). Let P*, ) be the steady state probability when then
the system is blocked.
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Figure 2
Diagram Depicting the Flow of the Customers Through the Nested System

2.2 Methodology

For this paper the methodology used to analyze the nested queue model is very
similar to what was used by Hunt (1956). Hunt examined a finite buffer between
two stations in a Tandem Queue model. He used a single server with a sequential
two-station model to compare traffic intensities for the three basic cases, namely,
(i) where an infinite buffer exists between the stations, with the exception that
the first station may have an finite buffer; (ii) where zero buffer exists between
the stations and (iii) where a finite buffer (greater than zero (0)) exists between
the stations, with the exception that the first station may have an infinite buffer.
A similarity between the Hunt case and the nested queue model is that both have
zero buffers between the stations. Hunt's methodology was also used by Perros
(1994) for solving tandem queue problems with the blocking principle.

Now we first show the changes of system states upon arrival or departure of
a customer. The state transition diagram is given in Figure 3.

Figure 3
Transition Diagram Depicting the Effect of Arrivals to the Sequential
Nested System

The diagram starts with the state (0, 0) (meaning no patient exists). When
a patient arrives to the system, the value of m =becomes 1, hence state changes
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to (1,0). Once service is received by the patient in the first station, the patient
moves to the second station and receives service, the state becomes (0,1). Here if
the service is completed in the second station the patient leaves the system and
state returns to (0,0). In general, our system is assumed to begin with (m,n) when
we have an arrival in the system, the state changes from (m,n) to (m+1,n). When
patient moves from station 1 to station 2, the state changes to (m-1, n+1). After
service is completed at the station 2 then state of the system changes from (m-1,
n+1) to (m-1, n). If there is an arrival during the process then the value of (m-1)
can change to (m). If the system is blocked, the state is defined by (m-1, n+1)*. The
symbol in the transition diagram (*) denotes blocking. We continue to analyze the
system until we have reached system capacity denoted by (K,n).

Using Figure 3, the governing steady state equations are obtained. For the
nested queue model we are interested in the stationary state probabilities P, or
P, which can be obtained by solving the system of steady state equations.

2.3 Analysis
2.3.1 Analysis of System Capacity for K = 2
We first consider capacity K = 2. The transition diagram becomes as follows.

Figure 4
Transition Diagram Depicting the Effect of Arrivals to the Sequential
Nested System for System Capacity K=2.

The steady equations are given as follows:

AP (0,00 = 12P(0,1) (1)
(A+u2)P o1y = H2P *1 1)+ U1P(10) (2)
(A+u)Pa0) = AP0y + 12P 1) (3)
(1 + 12)Pay = APy +2m P20 (4)
(U2)P *a,n= Py (5)
(2u1)P0) = AP0 (6)
We need this sum of probability to be unity:
Poo + Py +Pao tPan +Pran=1 (7)

Solving for P, ,, we get
2
2u1’
2
2Py + 20y (uy + 112) + 22 Qi + 2011° + 12%)

(8)

P =
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We know that
A 2/1#12#2
Pon=-Pon = =5 " 5 (9
2 2"y 220 pp (py + p2) + A2 2papg + 200" + p2%)
2 222 iy
Pay = (ﬁ) Poon =7 » 2, 5 (10)
2 20"y 24 pp (g + p2) + A2 uap + 211" + p12)
22 222,
Pran= 7P = 5 > 5. (A1)
2 2y 22 pp (i + 1) + A2 2pap + 200" + 12%)
21#1#22
Paw =3 -Poo = 7= 2 2. 2 (12)
1 2y + 22 p0 (g + 1) + A2 2papy + 2007 + p2%)
2
Py = o Pragy = e
@n = 5 2P0 = ——=— . 2 5. (13)
! 20"y 24 pp (g + p2) + A2 uap + 210" + 112%)

2.3.2 Analysis of System Capacity for K =3
Next we look at capacity of K=3. The transition diagram becomes as follows:

Figure 5
Transition Diagram Depicting the Effect of Arrivals to the Sequential
Nested System Where System Capacity (K) = 3

The steady state equations are as follows:

0 = —2P(0) + 12P(01) (14)
0 = —(A+u2)Peo,1) + 1P *a, 1+ 1P (15)
0 = —(A+u1)Puoy + AP o) + H2P 11y (16)
0=—-@A+u)P*an+mPau (17)
0=—(A+u + pu2)Payy + 211Po0) + AP0y + 2P *21) (18)
0 =—(A+2u)Po) + AP0 + U2P2) (19)
0 =—(u)P *@nt mPe1 + AP *q1) (20)
0=—(u +12)Pe1)+ 21Pgo) + APy (21)
0=—Qu)Pz0) + AP0 (22)
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The sum of all the probabilities
Pooy +Po +Pao+Pan+PrantPeot+Pent+PrentPsen=1 (23)

Solving the above equations we get P,

422003153 + 10201 153 + 102003 0p* + 4% + 8t + 4 Pu®
220012 + 220011y + A%p52 + 8% 113 4+ 140°uy 2y + 1051 iy + 325153 + 1004y * + 2824% w3,
+304% 1121052 4+ 152% 0 o3 + 3%t + 483us5 + 2203114y 4 4203013 pp? + 330311213 + 1003 pg ppt (24)
AU, + ANP Py + 2202ty + 38Ry 3y + 18T Pt + 207 S + A P
220 g% + 2201 3 pp* + A 2o S + Ap Sp® + 8Bugtpp®t + 4pg3up®

Poo =

Substituting P(0,0) into the other equations we can find the other
probabilities, Appendix 4 gives more detail.

As we see in Figure 2 for K=2 there is no occurrence of blocking but for K=3
there is blocking. When we observe the pattern from Figure 3 we see a general
pattern emerges. This general pattern of equations can be applied for values of K
> 3. For K=2, equation (5) cannot be derived from the general case, by using the
general format we obtain

0=—=W)P *qny+ t1Pay + AP *1) (25)

which is not same as (5), since AP *, ;) does not exist. Hence the steady state
equations for K=2 have been considered separately.

2.3.3 Analysis for General Value of K
For general values of K the steady state equations

0==2P0) + 12P01) (26)
0= —(A+u2)P1) + t2P *a,1)+ 11P 0 (27)
0=—A+u)Puo) + AP0 + H2P 1) (28)
0=—=A+u)P * 1yt u1P1) (29)
0=—(A+2u)Punn) + APin—1n) T 2Paun+1); 2<m<K, n=0 (30)
0=—(A+u +p2)Pimm) + 2Pmsin-1) + APm—1n) + 2P *¥ma1my; 1Sm<K-1,n=1 (31)
0=—A+u)P *upyt t1Pmpm) + AP *gq_1y; 2<m<K-—-1,n=1 (32)
0=-Cu)Pmmny+ APen-1n); m=K, n=0 (33)
0=—(u +12)Penm) + APn-1n) + 2l1Pems1n-1p; m=K -1, n=1 (34)
0 = —(u2)P *@mn)yt t1Pamn) + AP *¥gno1y; m=K—-1n=1 (35)

The total number of equations is 3K where K= system capacity.
The normalization equation for the probabilities is

Y o[Paoy] + TG Pan] + 2P ] =1 (36)

When we include the normalization equation, the number of equations now
total to 3K+1.
Following Konheim and Reiser (1976) the system is considered to be stable if

Piy>0, ﬁ <1and,%<1 for alliand jand unstable if P;;)= 0 for any i and j.
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When the system is stable, the queue length can be obtained as

L=3%5iPgo) + XI5 i[Pany + P (37)
3. NUMERICAL ANALYSIS

Using the above equations, a stability analysis was done for the nested queue
model to determine the best conditions of service for the customers in the
nested queue model. This analysis provides information on how a nested queue
system can be managed for fixed and variable values of arrival rates, service
rates and system capacities.

a. To determine the system capacity for a nested queue model given pre-
determined service rates for each station (¢, and u,) and arrival rates of the
patients.

b. To determine the best arrival rate of the patients given a pre-determined
system capacity and service rates for each station (y, and y,).

c. To determine the best service rate for the server in the first station(u,)
given a pre-determined system capacity, arrival rate for patients and service rate
for the second station (u,).

d. To determine the service rate of the server in the second station(u,) given
a pre-determined system capacity, arrival rate for patients and service rates for
the first station (u,).

For these cases we have summarized the results in Table 1 and then discussed
each case in detail. The table depicts the system capacities where the nested
queue model is stable and unstable, as well as the bifurcation point of stability.

Table 1
Results of Stability Analysis for the Considered Cases

Case Fixed values Stable Unstable Bifurcation point
1 A=1, 1,=3, 1,=2 K=[2,14] K=[15,00] K=14
2 K=15, 4,=3, ,=2 2=[0.6,00] 2=[0.1,0.5] 2=0.5
3 K=12, A=1, u,=2 1;=[0,11.4] w,=[11.5, o] w=11.4
4 K=12,A=1, ;=3 u,=[0,4.4] 1,=[4.5, ] 1w,=4.4

The table depicts the system parameters where the nested queue model is
stable, unstable and the bifurcation point of stability.

3.1 Stability Analysis for Fixed Arrival Rate and Service Rates
For the first aim, we fixed the arrival rates and service rates for the nested
queue model and determined at what system capacity the servers in the nested
queue model can provide the best service to the patients. These best conditions
of service for the pre-determined parameters of the model we have termed as
effective service. The effective service is determined by the stability region. By
calculating the steady state probabilities we can determine when the system
remains stable (P, is greater than zero).

For the present model, we chose A= 1, ;=3 and u,=2 for various values of
K (3,4,....) and have observed under what system capacity the system remains
stable. We saw that for K € [2,14] the system was stable and unstable for K €
[15,0], meaning the probabilities of for K € [2,14] are positive. These results
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have been summarized in Table 1. Figure 6 below shows the behavior of
probabilities Py, ), P(140) and P ;5 ;.

P(12,0) —& - P(140) —8— P(15,0)
0.000018
0.000016
0.000014
0.000012
0.00001
0.000008
0.000006
0.000004
0.000002 e im = —

0 * m

12 12.5 13 13.5 14 14.5 15
System Capacity (K)

Probabilities P(.j)

Figure 6
Stability Behavior of Probabilities for A= 1, u,=3 and u,=2

The graph shows bifurcation point (where the system changes its behavior from
stability to instability, meaning P, changes from being greater to zero to zero). We
take the last/first value of the parameter where the system is stable at K=14. From
Table 1-AC (Appendix C) we see that at K=14, P;,,, =0.000001, which is close to zero
but at K=15, P;5, = 0 . The results means that for the given arrival and service rates,
the maximum capacity of the system is K=14, meaning the system capacity where
satisfactory service is provided to the patients. For this model the average queue
length for the K=14 is L= 0.953859.

3.2 Stability Analysis for Fixed System Capacity and Service Rates

Next we fixed the system capacity, the service rates for the two stations and made
the arrival rates variable. We have calculated the values for P; for K=15, 4;=3 and
U,=2. The arrival rates of the patient are varied, starting from A = 0.1 until the system
becomes stable.

As shown in Table 1 we have observed that the system remains unstable for A
€ (0, 0.5] and stable for A € [0.6, o). Figure 7 below displays the stability region for
probabilities Py, P15 and Pyys .

—0— P(9,0) <ee@e+ P(12,0) P(15,0)

0.00014
0.00012
0.0001
0.00008
0.00006
0.00004
0.00002
0 r-

0.4 0.5 0.6
Arrival Rate of Patients (1)

Probabilities P (ij)

Figure 7
Stability Behavior of Probabilities for K = 15, u,=1 and u,=2
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In Table 1-AC ( Appendix C), it can be seen that at A = 0.4 the probabilities
start at slightly above 0 ( Py = 0.0000002) and then move to zero, while
at A = 0.5 the system is again tends to instability (P, = 0.00000026, P, =
0). At A = 0.6 the values are positive, at P 5, = 0.0000004, the value is just
above 0, hence giving the minimum value of arrival rate. The graph shows the
bifurcation point is A=0.6. This means that the scheduled arrivals of patient
should be at least 0.6/hr for an effective service. For fixed capacity and service
rates we have to adjust the arrival rate in order to give an effective service. The
average queue length for the stable system is L= 1.767123.

3.3 Stability Analysis When System Capacity, Service Rate for
2" Station Server and Arrival Rates Are Kept Constant
and Service Rate for 1 Station Server Is Variable

Similar to above, we fixed K = 12, A =1 and u,=2. The service rate y, is varied

until the system is unstable It is interesting to note that the system is stable for

U, € (0, 11.4] and unstable for u, € [11.5, ). In Figure 8, the stability regions
are shown for P 5 ), P g oyand Py, o).

—® P(5,0) --@-- P (9,0) P (12,0)

~ 0.00008
£ 0.00007 B = = e - - - o = - — -
g 0.00006
£ 0.00005
S 0.00004
s 0.
E 0.00003

0.00002

0.00001 -

0 ..................................... -
11.4 115
Service rate of 1st station server( ul)

Figure 8

Stability Behavior of Probabilities for K = 12, A= 1 and u,=2

We see that at y,=11.4, P;,,=0.0000647, P, ,= 0.0000041 and
P(1,0=0.00000001, hence the system is stable. In Table 2-AC (Appendix C) we
see that at y;=11.5, P 5 ;,, =0.0000636, P 4,= 0.000004 and P ,, (, = 0, therefore
the system is unstable. This means that for K= 12 and for the given arrival rate
and service rate for the second station server the service rate of the first sever
should be adjusted (e.g. the maximum value of u; < 11.5) in order to provide
a satisfactory service to the patients. The average queue length for the stable
system is L= 0.2756027.
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3.4 Stability Analysis When System Capacity, Service Rate for
1* Station Server and Arrival Rates Are Kept Constant and
Service Rate for 2" Station Server Is Variable

For this case we have fixed K = 12, A =1 and p,=3 and varied y,. In Figure 9, the
stability regions are shown for P 4 and P ;, ¢.

= 4 - P(8,0) P(12,0)

0.000005
0.000004 L T
0.000004
0.000003
0.000003
0.000002
0.000002
0.000001
0.000001
0.000000
0

Probabilities Pq.j)

4.4 . ) 45
Service rate of 2nd station (u2)

Figure 9
Stability Behavior of Probabilities for K =12, A= 1 and u,=3

We found that at u, = 4.5, P 5 ) = 0.0000042 and P ;, o, = 0 hence the system
is unstable. For u, = 4.4, P 5 o, = 0.0000042 and P ;, ;= 0.00000001 the system
is stable. The bifurcation point as seen on the graph is at P ;, o) yhen 4, = 4.5. Table
1 shows the summary of the results for the case. From the results in Table 2-AC
(Appendix C), for K= 12 and the given arrival rate and service rate of the first
station server, the service rate of the second station server should be adjusted (e.g.
U, < 4.4) to get the effective service. The average queue length for the stable system
isL = 0.6602436.

Further analysis was done where the nested queue system was analyzed
under variable service rates and arrival rates to see the effect on the utilization of
the servers as well as overall the system behavior. The system analyzed was for
a stable system. At K=3, we see that the system is stable hence we observed the
behavior at this system capacity. Table 2 depicts the results of the system under
variable service and arrival rates.

Table 2

Results Depicting the Effect of Variable A on the Steady State Probabilities,
Average Queue Lengths and Utilization of Servers of System at K = 3, where
u, =5and u,= 4

A=1, A=1.2, A=1.32, A=1.45, A=1.6, A=1.76, A=1.936, A=2.1296
P(0,0) 0.615 0.5535 0.5191 0.4839 0.4459 0.4084 0.3706 0.333
P(0,1) 0.1538 0.1661 0.1713 0.1754 .01784 0.1797 0.1794 0.1773
P(1,0) 0.1258 0.137 0.1422 0.1465 0.1502 0.1527 0.154 0.154
P(1,1) 0.0349 0.0464 0.0533 0.0609 0.0694 0.0783 0.0876 0.0971
P*(1,1) 0.0349 0.0446 0.0501 0.0558 0.062 0.068 0.0736 0.0792
P(2,0) 0.0134 0.0177 0.0204 0.0233 0.0288 0.0301 0.0337 0.0375
P(2,1) 0.0054 0.0084 0.0108 0.0136 0.0171 0.0212 0.0261 0.0319
P*(2,1) 0.0154 0.0241 0.0301 0.0372 0.0461 0.0564 0.0683 0.082

To be continued
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Continued
A=1, A=1.2, A=132, 2A=145, A=1.6, A=1.76, A=1.936, A=2.1296
P(3,0) 0.0013 0.0021 0.0027 0.0034 0.0043 0.0053 0.0065 0.008
Stable/unstable Stable Stable Stable Stable Stable Stable Stable Stable

Average length of

. 0.0221 0.0346 0.0436 0.0542 0.0675 0.0829 0.1009 0.1219
queue in first stage

Averagelength of o 21000 (34555 0359165 0369942 0379684 0381405 0380347 0374492
queue in system

Utilization of nurse 0.1 0.12 0.132 0.145 0.16 0.176 0.1936  0.212696
Utilization of doctor  0.239925  0.2841  0.309903 0.3373425 0.36836 0.400752 0.43565 0.472664

In Table 2 we see that as we increase the arrival rate of the patients the length
of queue increases for fixed values of service rates with respect to servers in
both stations. With the increase in arrival the utilization of nurses and doctors
also increase. We see that when we the arrival rate of the patients increase from
80% to 90% from the initial arrival rate, the increase in utilization of nurse and
doctor increased by 10 % and 9% respectively. From this we see the increase in
arrival rate causes the nurses are busier. When the increase in arrival rate is 50%
to 60% the increase in utilization of nurse and doctor is again seen to increase
by 10% and 9%.

We looked at the effect on the average length of queue at the first station with
change in arrival rate of the patient. These results are seen in Figure 10.
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0.1

0.08

0.06

Length of Queue

0.04

0.02

1 1.2 1.4 1.6 1.8
Arrivale rate of Patients (4 (per hr))

Figure 10
Graph Shows the Effect on the Average Length of Queue for a Stable System
with Change in Inter-Arrival Rate of the Patient with Fixed K, u,, u, and
Variable 4

We see that when the service rate for the second station is fixed and the
arrival rate of the patients is fixed, as the service rate of the first station
servers changes the length in queue decreases, as the nurse serves patients
faster in the first station the stations are now able to move to the second
station, hence the length of queue in the first stage decreases with increase in
movement of patients.

Further analysis was done to see the effect of variable service rate of the
first station servers on the steady state probabilities, average queue lengths and
utilization of servers of system at K = 3, where A and p, are fixed. The results are
seen in Table 3.

13



Stability of Nested Queue Model With Finite Waiting Capacity

Table 3

Results Depicting the Effect of Variable u, on the Steady State Probabilities,
Average Queue Lengths and Utilization of Servers of System at K = 3, where
A=1and u, =4

H,=5 =6 m=6.6  u,=7.26 p,=7.986 un,=8.785 n,=9.663 u,=10.63
P(0,0) 0.615 0.6364 0.6463 0.6559 0.6638 0.6716 0.6786 0.682
P(0,1) 0.1538 0.1591 0.1616 0.164 0.166 0.1679 0.1697 0.1713
P(1,0) 0.1258 0.1083 0.0999 0.0915 0.0846 0.077 0.0714 0.0654
P(1,1) 0.0349 0.0304 0.0282 0.026 0.021 0.0223 0.0205 0.0189
P*(1,1) 0.0349 0.0365 0.0372 0.0379 0.0385 0.0391 0.0397 0.0402
P(2,0) 0.0134 0.0096 0.008 0.0066 0.0056 0.004 0.0039 0.0032
P(2,1) 0.0054 0.004 0.0034 0.0039 0.0025 0.0021 0.0018 0.0015
P*(2,1) 0.0154 0.0151 0.0149 0.0147 0.0146 0.0144 0.0142 0.0141
P(3,0) 0.0013  0.000796 0.000606 0.000453 0.000346 0.000264 0.0002  0.000151
Stable/unstable Stable Stable Stable Stable Stable Stable Stable Stable

Average length of

A 0.0221  0.019896 0.018906 0.019053 0.017446 0.016764 0.0162  0.015751
queue in first stage

Average length of 0.315065 0.305528 0.300541 0.297555 0.287517 0.286902 0.283587 0.279941
queue in system
Utilization of nurse 0.1 0.12 0.132 0.145 0.16 0176 01936 0.212696

utilization of doctor 0.239925 0.2841  0.309903 0.3373425 0.36836 0.400752 0.43565 0.472664

From Table 3, we see that when there was an increase in service rate by 60%
for the first station servers (the nurses), there were a decrease in utilization of the
nurse by 37%. The doctors utilization also decreases but it very little >0.01%. As
the service rate increase for the nurses, the nurses now served faster and were
more idle.

Figure 11 further depicts the results from the table and shows the effect on
average length of queue for the first station with variable service rate for the
first station servers.

0.023
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0.02
0.019
0.018
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Length of Queue

4.5 5.5 6.5 7.5 8.5 9.5 10.5

Service rate of 1st station server (y, (per hr))

Figure 11
Graph Shows the Effect of Service Rate of the First Stage Server on Length
of Queue for Stable System with Fixed K, A, u, and Variable u,

In Figure 11 we observe a similar relation as with the first station server, as
the number of patients being served by the second station server increases the
length of waiting in queue for the customers decreases.

Similarly we analyzed the effect on average queue length with variable
service rate of second stage server; these results are summarized in Table 4.

14
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Table 4
Results Depicting the Effect of Variable u, on the Steady State Probabilities,
Average Queue Lengths and Utilization of Servers of System at K = 3, where
A =1and u, = 5 are Fixed

H,=2 H,=3 n,=3.2 u,=33 u,=3.6 pu,=3.8 u,=3.96 u,=4 n,=4.356

P(0,0) 0.4383 0.5519 0.5673 0.5744 0.5939 0.6048 0.6131 0.615 0.631
P(0,1) 0.2191  0.184 0.1773  0.1741 01649 0.1592 0.1548 0.1538 0.1449
P(1,0) 0.0925 0.1141 0.1169 0.1183 0.1218 0.1239  0.1254 0.1258 0.1288
P(1,1) 0.0584 0.0442 0.042 0.041 0.0382  0.0365 0.0352  0.0349 0.0325
P*(1,1) 0.0974 0.0552 0.05 0.0476  0.0415 0.038 0.0355  0.0349 0.0303
P(2,0) 0.0102 0.0123 0.0126  0.0127 0.013 0.0132  0.0134 0.0134 0.0137
P(2,1) 0.0098 0.0071  0.0067  0.0065 0.006 0.0056  0.0054  0.0054 0.0049
P*(2,1) 0.0732  0.0302 0.026 0.0242  0.0198 0.0174 0.0158  0.0154 0.0126
P(3,0) 0.001  0.0012 0.0013 0.0013 0.0013 0.0013 0.0013  0.0013 0.0014
Stable/unstable Stable  Stable Stable Stable Stable Stable Stable Stable Stable

Average length of
queue in first stage
Average length of
queue in system
Utilization of nurse 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Utilization of doctor ~ 0.4464 0.3126  0.2948  0.2867  0.2645  0.2517  0.2422  0.2399 0.2215

0.084  0.0385 0.034 0.032 0.0271  0.0243  0.0225 0.0221 0.0186

0.3925 0.3516 0.3434 0.3395 0.3287 03214 04642 0.3151 0.305

From Table 4, we see that increase in service rate of the second station by
55%, decrease utilization of the doctor by 50% while nurse utilization is steady.
When we graphically depict the results in Figure 12, we see that as the service
rate of the second stage server is increased the average queue length at the first
station decreases.
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Figure 12

Graph Shows the Effect of Service Rate of the Second Stage Server on
Length of Queue for Stable System With Fixed K, A and u, and Variable u,

4. CONCLUSIONS

The nested queue model is a “hierarchical system of multiple queues such that
service demand in one queue is created by a subset of the units in the system of
another queue higher in the hierarchy of possibly providing an entirely different
service” (Modi 1974, p.220).
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Our main goal was to utilize a nested queue model for the following cases:

a. To determine the system capacity for a nested model given pre-determined
service rates for each station (u, and p,) and arrival rates of the patients.

b. To determine the best arrival rate of the patients given a pre-determined
system capacity and service rates for each station (y; and p,).

c. To determine the best service rate for the server in the first station(u,)
given a pre-determined system capacity, arrival rate for patients and service rate
for the second station (u,).

d. To determine the service rate of the server in the second station(u,) given
a pre-determined system capacity, arrival rate for patients and service rates for
the first station (u,).

The following conclusions can be drawn.

i. For a pre-determined arrival of the patients and service rates of the servers
in both stations, we can determine the number of patients which can be served
efficiently. This information can help in scheduling the appointments of the
patients.

ii. For a pre-determined number of patients and service rates we can
determine the arrival rate so that the system can have efficient performance
which again helps in scheduling the appointment of patients.

iii. For a pre-determined number of patients, arrival rate and service rate of
one station we can find the service rate for the other station and in order to have
to provide the most effective service to the patient.

iv. Further analysis can give us on how a stable system works and how by
changing of the different variables in the nested queue system we can achieve
the correct utilization of the servers.

The stability analysis of the nested queue model has been applied to a health-
care scenario in this paper; however, this analysis can also be applied for other
areas e.g. airports, banks etc.
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APPENDIXES
Appendix A
For K=2
The steady equations are given as follows:
AP0y = U2P(01) (1)
(A+u2)P1y = 2P *q 1+ tPao (2)
(A+u1)P0) = AP0y + 12P 1) (3)
(11 + 12)P1,1) = AP,y +211P20) (4)
(2P *1,1y= 1 Pq,) (5)
(2u)P 0 = AP ) (6)

The sum of the probabilities:
Pooy +Pon +Paon+Pant+Pragn=1 (7)
Simplifying equations (1), (5) and (6)
APo,0) = H2P(0,1)

2
Py = EP 0,0)

251
Pxan= M—ZP @
Py = —P
@0 = g, Pao
Taking equation (3)
(A+u1)P0y = AP0y + H2P1 1)

U

A 2
Py = — P+ P
(1,0) A+w) (0,0) A+uw) 11D
Taking equation (2)
1Py = (A+u2)P o1y — P iy

A M2 A4+ up)
(m Py + (/1+—H1)P(1’1)) = Tp(o,o) —uPan

A U2 A+ 1)
A+ 1) Poo + A+ 1) Pan = Ha e Poo =Pay

Hy A+ 1) A )
2 1) P = - P
((A + uq) @ ( Mol A+ 1) ©0)
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(/1+u1 +#2) _ (/1(/1+uz)(/1+u1) —/1#2#1>P
Atp) /70D Hats (A + ) ©O

AP+ A+ + ) — Ao
Puyy = Po,0)
Uapy (A + py + pp)

p :< AA+m + 1) )P
@D Mo (A + pg + p12) ©0)

AZ
Pan = <#2H1)P(O'O)

Uz
Py = ZP *(1,1)

Substituting

AZ
P xq,1y=— P
(€BY) 1hy2 0,0)

Substituting the above equations into equation (4)

(M1 + w) P11y = AP 1) +2U1 P20y

2P0y = (W + u2)Pa,1y — APy

1 (2 + ) Ay
P = (( - Po,0

E Ha 1 Hz
1 (22
Poo = 2\ Po,0)
AZ
Py = 20t Po,0)
P = Z—MP(LO)
2

P0) = o Po,0)

Substituting all values into

P(O,O) + P(O,l) + P(I,O) + P(l,l) + P *(1'1)+ P(Z,O) =1
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22 22 22
P(O,O) + EP(O‘O) + EP(O‘O) + #—2#1 P(O,O) + EP(O‘O) + —Zﬂlz P(O,O) = 1

2 2 2
2u %1y + 200y + 20 p? + 222y + 227 ° + 2Py

P =1
2 (0,0
21 2#2

2
2ui’
2
2ui’ iy + 20y + 1) + 22ty + 2% + 1)

P =

We know that
Por = —P
0,1) Ly (0,0)

2
22p1 12
2
21212 F2Ap 1 (1 H2) A2 2uapa+2p 1 +i2?)

AZ
Pay =|—|P
(¢BY) <#2#1> (0,0)

202415
2
201212 F2Ap (1 H2) A2 2uapa+2p1 P +i2?)

/12
Pxan=—=Poo
M2

Py =

Puyy =

242,
2
201212 F2Ap1 p (1 H2) A2 2uapa+2p1 *+p2?)

P *(1,1)=

Pao =—Pw0
H
2
2Au1uz
2
2u12p " +2A 1 (U1 +p2) +A2 2u 1z 201 2 +it2?)

/12
P = mthwm

Py =

2
A2uy

2
21212 F2A 1 g (1 i) FA2 Ui o +2p1 P +i2?)

Pao) =

Appendix B
For K=3
The steady state equations are as follows

0=—2P,0) + 2P
0= —(A+u2)P) + U2P >, 1)+ 1P (1,0
0 =—=A+m)Puoy + AP0y + U2P i1y

0=—A+uw)P *qn+mPan
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0 ==+ + 12)Pa1y + 2P0y + APy + 12P *o1) (5)
0=—=A+2u))Pp0) + AP0y + 2P 21y (6)
0= —=W2)P *@1y+ 1Py + AP * 1y (7)
0=—=( +u)Pr1)+ 2uPio) + AP (8)
0 =—-Q2u)Pazo + AP0 9)
Solving
A
Poy = - Poo (10)
2
Pxan= %P(l.l) (11)
P = P(z 0) (12)

Taking equation (15)
(A+um)Peiy = AP0y + 2P 11y

REECEYTO R RIS

Taking equation (14)
P = (A+u2)Po,1) — #1Pa )

A U A4+ pup)
((/1 ) Poo + T+ 1) P(1,1)>H1 = 0, Pooy — P
A M A+ )
e MR ET MR L

Iz A2+ up) A )
— 1) Pupy = ( - P
<(A + 1) @D Mzl A+ ) ©.0)

A+ + (A ) A+ ) — Ay
5 )Pan= Po,0)
A+ uy) patty (A + py)

_ A% + A+ oA + pipp) — Apiy
Pay = Po,0)
Moty (A + pg + 1)

p =(/12(/1+IJ1+.U2) )P
an Uapy (A + pg + 1) ©0)

22
Pay = (m) P (13)
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Substituting
Ha
P = —P *
@n 1 1
AZ
Pxan=:"=Poo (14)

Substituting P(;,, into equation (15) we can find P,
0=—=A+w)Pu0) + AP0 + 2P 1)

/12
(A+u)Poy = APy + (Z) P,0)

Aug+a?
Paoy = (W) P, (15)

Now to find P, ), P(, ) and P*, ;. Substitute into equation (19) the values for P*;

3
0 =—(u)P *@ 1yt kP + EP(O'O)

P @)= _P(z 1)"‘ P(OO) (16)

Substitute into equation (18) the values for P,

Azlll + AZ
0 = —(A+2u)P 0 + PREETS) Pooy + U2P21)
_ A2pug+A2 U2
Pan = (ﬂ1(/1+2ﬂ1)(/1+#1)) Poo * Gz e (17)

Substituting equations (29) and (30) into (17)
0=—-(A+u +Hz)( )P(00)+ 2( A2y 422

M1 (A+2p1) (A1)
Simplifying
p _ (A+2p1) (/12(/1+u1+!12) —2 ( A2uq+A ) _Ar ﬁ) p 18
CRY 2puqpo+pu(A+2p1) (n2p1) w1(A+2p1)(A+p1) H2  p2? oo (18)

22ug A2 K2 O+2p1) 22(tpstug) 22ug A2 2
Pog = + -2 £ P
@0 ((u1(/1+2u1)(/1+u1)) (+2u1) 2#1uz+u1(/1+2u1)( D) (u1(/1+2u1)(/1+u1)) n2 2 ) oo (19)

)P(oo) + (HZM)P(Z i + P(om + 1 Py +—P(oo)

A+2p1) A2(A+p+u7) A2pq+A2 a2 a3 A3
Papy = (2 —C ( -2 )-L-L))+5)p
@n (Mz 2upo+p1 (A4+2p1) (201) w1@A+2u1)A+p1)) w2 p2? w3 ) 00 (20)
Substituting equation (32) into (25)
P _ A ( A2py+A2 )+ "y (A+2p1) (12(/1+,4,+uz)_2( A2 +22 )_ﬁ_ 13) p (21)
GO 2 \ W@z @run) " Arzu) \2mime i G42e) N Guann) m@+ze)GH))  m ke 0.0

Solving for P4,

P(O,O) + P(O,l) + P(I,O) + P(l,l) + P *(1'1)+ P(Z,O) + P(Z,l) +P *(2‘1)+ P(3'0) =1
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A3 1% + 104 1% + 102 3o + 4 P03 + 8o + 4py P
220012 + 2201 piy + A%u52 + 8513 + 142512 1y + 1025 py pp? + 35053 + 1044y * + 28243y,
+30A% 01 2y % + 152%u pp3 4 3%y + 483015 + 2223y % py + 4203 p43 up? + 33031 2103 + 10A3 py pp* (2 2)
TS + AN Py + 2202 ap? 4 38R g3 g% + 18Au 2yt + 20 S + Ay P ip?
2201 a3 + 22013 upt + Ay 25 + Ay Spp® + 8y tup® + 4B pp®

P =

Substituting P, into the above equations we find the additional probability
values.

A2 013 1% + 1040 153 + 102013 " + 415 + 8 up* + 4p, 3 1,®)
220012 + 22001ty + A%pp? + 845y 3 + 1445012 Uy + 1050 pip% + 325153 + 1044, 4
+282% 1,3,
F3044, 2052 + 15440 153 + 344t + 42310,5 + 220314y + 420313 1,2 + 33030, 21,3 + (23)
H2 10031y iyt
1H2
FA3Up5 + 4N2 Sy + 22207 pyfpp? + 38X2 1 3 pp3 + 18R 21y 2ppt + 2%y S + 4Ap S pp?
2201 a3 + 2203t + AMty 255 + 4pg S + Bug it + 4py 35

Py =

2241 % (B + 2020 + 4221y + Sy + 5A° + 200y + dpin® + 2053
220012 + 22001 p1y + 20152 + 820143 4+ 140501 2ty + 1045y p1p% + 325053 + 1044 * + 282% 3,
+3044 12 p% + 15201 pp3 + 300 ot + A3 15 + 22031 M, + 4203103152 + 3303012153 + 1003y iy (2 4)
3,5 + 4N Sy + 2202 p1 i + 38020 3 5% + 18X 21y 2yt + 202 1S + 4452
2201 0% + 220 3t + AN 25 + A S1p® + By tpup® + dpy B

Py =

(2% 1y (A + 1p) (A% + 3y + 34y + 21 ° + 4ty + 215°))
220012 + 220y py 4+ 20u52% + 80113 + 140511 2y + 1050 % + 3205053 + 1044y * + 284% 3,
+304 0121152 4+ 152411 13 + 344 % + 43015 + 2203114y + 42231031152 + 330311213 + 10A3 1, pp* (25)
A% + AN Sy + 2202 pp? + 3824y 313 + 18R 2 2 it + 202 S + A S p?
220 3 + 22013 + AN 2o + A P p® + Buytupt + 4 3 up°

Puny =

A0 P (A + 32 + 3y + 2u0% + dppy + 2115%))
220012 + 2280 piy + 20152 + 845 g3 4+ 1450y 2y + 10251 iy 2 + 345053 + 104%uy* + 282% 3,
302040120452 4+ 152% 13 + 3%y + 403005 + 2203y %, + 422303 1,2 + 3303112053 4+ 1003 g pp* (26)
FA3 U5 + AN Sy + 22021 p? + 380203 1% + 1802 2yt + 202 1o + A S up?
220 3 + 2203 o + AN e + A P g ® + Buytpt + 4p 3 p®

P xq1y=

QAP pp? (W3 + 2021 + 322, + 34z + 344 + iy + 2p3 5% + 1))
220012 + 22005ty + AOus2 4+ 845143 + 14251121y + 1045 g o2 4 325u53 + 102% 1, * + 28243,
+3024 12 1p? + 1524 u1ap3 + 324y + 423015 + 2203ty + 420313157 + 33031121153 + 1003y pip (2 7)
A3 155 + 40215y + 220701 *pp? + 38A20 31,3 + 18020 2ppt + 2021y + A4S pp?
220 o + 2203 pp* + AN 2o + A Sp® + Bpyt it + A 35

P =

QA (22 + 32211 + 3027 + 115°) + 230, 2, (3 + 5Au, + 3#22) + 22303 15 (22 + 211))
22002 + 2200y py + A%up2 + 825143 + 14250, 2 py + 1050y pp? + 34553 + 1044y * + 28243,
3042t + 1500y g + X441 + 4035 + 220300 g + 42030137 + 3303 %1% + 108t (28)
FA3 U5 + AN Sy + 2202 1ty + 38021y 3y + 18A 2y 2ppt + 202y 1S + 4y S pup?
220 3 + 220 pp* 4 Ahun P pp® + 4ugt g + Byt + 4pg S

Py =

QP23 + 4221 + 3020, + 54y + 8Aypp + 32 1o* + 20° + 6111 %y + Sy p? + 12*))
22012 + 220Uy + A%up% + 82513 + 1445121y + 102513 pp? + 325053 + 10A% g * + 28243,
+3024 2% + 15A% iy 1o + 32%pp* + AW S + 2203 p1 pp + 42031y P p? + 33031 243 + 10M3 g pp* (29)
TN + AN Sy + 2202 p? + 38N 33 + 18N Pyt + 2A% 1 + AAps P ip?
220t o3 + 22003 pp* + AN 2 oS + A Sp® + B ot + 4p B pp®

P *1)=

P _ A ( 221422 ) LK (A+2u1) (Az(llﬂtlﬂtz) _ 2( 22uy+a? ) _ ﬁ _ ﬁ)
GO ™ 2 \ \y rzu) @iy (A+2p1) \ 2n1u2+11(A+2p1) (u2p1) H1(A+2u1) A+u1) H2  n2?

( )

42003 15° + 104 *pp® + 104 3 i + 4u P 1p® + 8y ' + 4 pp®
220012 + 2280 piy + A%uy% + 825113 + 142511 2y + 1045 g pay? + 345053 + 1044y * + 2824 w43, (30)
+30A%11 21152 + 15A%u pp3 + 3%yt + 423115 4+ 2203 %y + 42033 152 + 333042153 4 103y o *
A5 + AN Sy + 2202 up? + 380 g3 13 + 18M 24 2ppt + 202y S + 4Au S pp?
2203 + 2203 ot + AN 2 + A Spp® 4 Bugtupt + 4py 3 S
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Appendix C

Table 1-AC
Results Depicting Steady State Probabilities for Average Queue Lengths
and Stability Analysis for Values of K = 14 and 15

K=14,2=1, K=15,A=1, K=15,A=0.4, K=15,21=0.5, K=15,2=0.6,
H,=3 and H,=3 and p,=1and p,=1and u,=1and

M,=2 Mp=2 Mp=2 Mp=2 Mp=2

P(0,0) 0.338955 0.338938 0.624025 0.5245721 0.3538936
P(0,1) 0.169477 0.169469 0.0936037 0.1049144 0.1061681
P(1,0) 0.121055 0.121049 0.1895476 0.2142463 0.2214363
P(1,1) 0.072633 0.07263 0.0296022 0.045058 0.0709809
P*(1,1) 0.072633 0.07263 0.0128705 0.0187742 0.0273004
P(2,0) 0.026073 0.026072 0.0303241 0.0468937 0.0273004
P(2,1) 0.030729 0.030728 0.0064405 0.0134232 0.0333792
P*(2,1) 0.05494 0.054938 0.004479 0.008722 0.0191383
P(3,0) 0.007784 0.007783 0.0050533 0.0108413 0.0288205
P(3,1) 0.014207 0.014206 0.0012627 0.0036308 0.0144335
P*(3,1) 0.03252 0.032519 0.0011332 0.0029665 0.0099679
P(4,0) 0.003124 0.003124 0.0008661 0.0025978 0.0113278
P(4,1) 0.007043 0.007042 0.000238 0.0009491 0.00608
P*(4,1) 0.017883 0.017882 0.0002513 0.0008899 0.0046387
P(5,0) 0.001481 0.001481 0.0001513 0.000637 0.004567
P(5,1) 0.003621 0.003621 0.0000441 0.0002449 0.0025388
P*(5,1) 0.009582 0.009582 0.000052 0.0002503 0.0020469
P(6,0) 0.000752 0.000752 0.0000268 0.0001585 0.001867
P(6,1) 0.001892 0.001892 0.0000081 0.0000628 0.0010569
P*(6,1) 0.005086 0.005086 0.0000103 0.0000679 0.0008789
P(7,0) 0.000392 0.000392 0.0000048 0.0000398 0.000769
P(7,1) 0.000995 0.000995 0.0000015 0.0000161 0.0004396
P*(7,1) 0.00269 0.00269 0.000002 0.000018 0.0003719
P(8,0) 0.000206 0.000206 0.0000009 0.0000101 0.000318
P(8,1) 0.000524 0.000524 0.0000003 0.0000041 0.0001827
P*(8,1) 0.001421 0.001421 0.0000004 0.0000047 0.0001561
P(9,0) 0.000108 0.000108 0.0000002 0.0000026 0.0001318
P(9,1) 0.000277 0.000277 0.0000001 0.0000011 0.000076
P*(9,1) 0.00075 0.00075 0.0000001 0.0000012 0.0000652
P(10,0) 0.000057 0.000057 0 0.0000007 0.0000547
P(10,1) 0.000146 0.000146 0 0.0000003 0.0000316
P*(10,1) 0.000396 0.000396 0 0.0000003 0.0000272
P(11,0) 0.00003 0.00003 0 0.0000002 0.0000227
P(11,1) 0.000077 0.000077 0 0.0000001 0.0000131
P*(11,1) 0.000209 0.000209 0 0.0000001 0.0000113
P(12,0) 0.000016 0.000016 0 0 0.0000094
P(12,1) 0.000041 0.000041 0 0 0.0000055
P*(12,1) 0.00011 0.00011 0 0 0.0000047
P(13,0) 0.000005 0.000008 0 0 0.0000039
P(13,1) 0.000009 0.000021 0 0 0.0000023
P*(13,1) 0.000069 0.000058 0 0 0.000002
P(14,0) 0.000001 0.000003 0 0 0.0000015
P(14,1) 0.000005 0 0 0.0000007
P*(14,1) 0.000036 0 0 0.000001
P(15,0) 0 0 0 0.0000004
Stable/Unstable Stable Unstable Unstable Unstable Stable
Average length of queue in first stage 0.422267 0.422855 0.0250605 0.0626502 0.2509502
Average length of queue in System 1.453823 1.454461 0.4938594 0.6943455 1.1166054

23



Stability of Nested Queue Model With Finite Waiting Capacity

Table 2-AC
Results Depicting Steady State Probabilities for Average Queue Lengths
and Stability Analysis for Values of K= 12

K=12, \=1, u,=11.4 K=12,3=1, p,=11.5 K=12,2=1, p=3 K=12, =1, u,=3

and p,=2 and p,=2 and u,=4.4 and u,=4.5
P(0,0) 0.4558702 0.4562533 0.5440102 0.5478179
P(0,1) 0.2279351 0.2281267 0.1236387 0.1217373
P(1,0) 0.0412869 0.040954 0.1857211 0.1868775
P(1,1) 0.028044 0.0278359 0.0451987 0.044376
P*(1,1) 0.1065671 0.1067044 0.0251104 0.0242051
P(2,0) 0.0023114 0.0022726 0.0342554 0.0343839
P(2,1) 0.0068623 0.0067941 0.0122879 0.0119578
P*(2,1) 0.0615989 0.0616123 0.0114767 0.0109233
P(3,0) 0.0003399 0.0003332 0.006846 0.0068325
P(3,1) 0.0028891 0.0028619 0.0031061 0.0029874
P*(3,1) 0.0315115 0.031508 0.0038509 0.0036156
P(4,0) 0.0001327 0.0001302 0.0014631 0.0014467
P(4,1) 0.0014089 0.001396 0.0007718 0.0007321
P*(4,1) 0.0158577 0.015854 0.0011419 0.0010567
P(5,0) 0.0000647 0.0000636 0.0003296 0.0003219
P(5,1) 0.0007041 0.0006977 0.0001918 0.0001792
P*(5,1) 0.0079616 0.0079591 0.000318 0.0002899
P(6,0) 0.0000324 0.0000318 0.0000772 0.0000743
P(6,1) 0.0003532 0.0003499 0.0000479 0.000044
P*(6,1) 0.0039959 0.0039944 0.0000855 0.0000767
P(7,0) 0.0000163 0.000016 0.0000186 0.0000176
P(7,1) 0.0001772 0.0001756 0.000012 0.0000109
P*(7,1) 0.0020054 0.0020045 0.0000225 0.0000199
P(8,0) 0.0000082 0.000008 0.0000046 0.0000042
P(8,1) 0.0000889 0.0000881 0.000003 0.0000027
P*(8,1) 0.0010065 0.001006 0.0000059 0.0000051
P(9,0) 0.0000041 0.000004 0.0000011 0.000001
P(9,1) 0.0000446 0.0000442 0.0000008 0.0000007
P*(9,1) 0.0005051 0.0005048 0.0000015 0.0000013
P(10,0) 0.0000021 0.000002 0.0000003 0.0000003
P(10,1) 0.0000224 0.0000222 0.0000002 0.0000002
P*(10,1) 0.0002535 0.0002533 0.0000004 0.0000003
P(11,0) 0.0000002 0.0000002 0.0000001 0.0000001
P(11,1) 0.0000017 0.0000017 0.0000001 0.0000001
P*(11,1) 0.0001364 0.0001362 0.0000001 0.0000001
P(12,0) 1E-08 0 0.0000001 0
Stable/unstable Stable Unstable Stable Unstable
Average length of queue in first stage 1.1305752 1.1296219 0.0576234 0.00553076
Average length of queue in system 0.2756027 0.2753201 0.6602436 0.6510576
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