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Abstract: In this paper,we consider certain quasilinear difference equa-
tions

(A) A2(| AQyn |CM_1 AQyn) + 4n | Yr(n) |ﬁ_1 Yr(n) = 0

where

(a) a, B are positive constants;

(b) {an}53 are positive real sequences. ng € No = {1,2,-- }. Oscillation and
nonoscillation theorems of the above equation is obtained.
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1. INTRODUCTION

In this paper, we consider certain quasilinear difference equations
(A) A2(| Azyn |a71 A2yn) + qn | Yr(n) |ﬂ71 Yr(n) = Oa
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where
(a) a, B are positive constants;
(b) {gn}s are positive real sequences. ng € No = {1,2,---}.
(¢) 7(n) < n, and lim,, = coT(n) = co
The Equation (A) can also be expressed as

A2 ((A%Yn)™) + @n(Yr () =0, (1.1)

in terms of the asterisk notation

G =& sgnE=[EP7NE EER, y>0.

It is clear that if {y,} is a eventually positive solution of (1.1), then —{y,} is a
eventually negative solution of (1.1).

Lemma 1.1. Assume that {y,} is a eventually positive solution of (1.1). then
one of the following two cases holds for all sufficiently large n:

I: Ay, >0, A%, >0,  A(A%y,)" >0
II : Ayn > 07 Azyn < 07 A(Azyn)a* >0

Proof. From (1.1), we have A2((A%y,)**) < 0 for all large n. It follows that Ay,
A%y, A(A2%y,)* are eventually monotonic and one-signed.

(A) if A(A2%y,)* < 0 eventually. Then combining this with A2((A%y,)*) <0,
we see that lim,, o (A%y, )% = —oco. That is A?y,, — —oo for all large n. It follows
that Ay, — —o0, y, — —oo, which contradicts the positivity of {y,}.

(B) if A(A%y, )™ > 0 eventually. Then combining this with AZ((A2y,,)*) <0,
we see that A(A2y,)* — 0 or — a > 0 so

n—1

(A%g,) = (A2yn) + 3 (A2y,,)2.
N

If (A%y,)* > 0. That is A%y, > 0 is increasing and — C or oo. It follows
that Ay, > 0; If (A%y, ) < 0. That is A%y, < 0 is increasing and — d or 0. If
Ay, < 0, then y, — oo, it is impossible, so Ay, > 0. This complete the proof of
the lemma. O

From Lemma (1.1), we know y,,, Ay, A%y,, A(A%y, )% tend to finite or infinite
limits as n — oco. Let
lim A%y, =w;, i=0,1,2, and lim A(A%y,)* = ws.
n—oo n—oo
It is that ws is a finite nonnegative number. One can easily show that:
If y, satisfies I, then the set of its asymptotic values w; falls into one of the
following three cases:
It wp = w1 = wy = 0o,ws € (0,00);
I i wyp = wy = wy = 00,w3z = 0;
I3 : wo = wy = 00,ws € (0,00),ws = 0.
If y, satisfies II, then the set of its asymptotic values w; falls into one of the
following three cases:
II; : wp = co,wy € (0,00),ws =w3 =0
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Iy : wp =00,w; =wy =w3 =0

I3 : wp € (0,00),w; = wy = w3z =0.

Equivalent expressions for these six classes of positive solutions of (1.1) are as
follows:

I; : lim = const > 0;
n—00 nity

Ir: lim In_ _ =0, lim yg 003
n—o00 g +1 n—oo N

I3: lim y—g = const > 0;
n—oo N

II; : lim In _ const > 0;
n—,oo N

Il : lim y—n—O lim ¥y, = oo;
n—oo N n—oo

II3 : lim y, = const.
n—o0

Let y,, be a positive solution of (1.1) such that ,, > 0, 4.y > 0forn > N > ng.
summing (1.1) from n to co gives

A(D%yn)* =ws+ Y 4s(yrm)’s n = N. (1.2)

sS=n

If y, is a solution of type I;(i = 1,2, 3), then sum (1.2) three times over [N, n—1]
to obtain

n—1 s—1 o) =
Yn = ko + ki(n — N) + Z(N—S) k2a+z <W3+Zq0(y‘r(o))5> , (13)
s=N r=n o=r

for n > N where ko = yn, k1 = Ayn, ks = A2yy are nonnegative constants. The
equality (1.3) gives a representation for a solution y, of type — I;. A type — Iy
solution y,, of (1.1) is expressed by (1.3) with w3 = 0.

If y, is a solution of type I3, then, first summing (1.1) from n to co and then
summing the resulting equation twice times over [N, n — 1] to obtain

o0

Yn =ko+ki(n—N)+ Z n—s [WQ —Z(r—s)qr(yT(r))ﬂla, n>N (1.4)

=S

A representation for a solution y, of type I1; is derived by summing (1.2) with
w3z = 0 twice from n to oo and then once from N ton — 1 :

_ko—i—z <w1+z Zo—r qU(yT(U))5]> , n>N (1.5)

a representation for a solution y, of type Il is given by (1.5) with wqy = 0. a
representation for a solution y,, of type I3 is derived by summing (1.2) with ws =0
three times from n to co yield

Yn = Wo — Z(S - Tl) [Z(T - s)qr(y7(7'))ﬁ] ;, n>N (16)

sS=n =S
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2. NONOSCILLATION CRITERIA

Theorem 1. The equation (1.1) has a positive of type — I; if and only if

[e.°]

Z qn(T(n))2+%B < 0 (2.1)

n=no

Proof. Necessary. Suppose that (1.1) has a positive of type — I, then, it satisfies
(1.3) for n > N, which implies that

This together with the asymptotic relation lim Un + = const > 0; shows that

n—00 nity
the condition (2.1) is satisfied.
Sufficiently. Suppose now that (2.1) holds. Let k > 0 be any given constant.
Choose N > ng large enough so that

2 ﬁ e o «
@ 1 (2k)* — k
((a+1)(20é+1)> Y alr(n)* e < G (2.2)

n=no

Put N, = min{N, ianv 7(n)}, and define
n>

042

“ @ D@asp M onzN

Q=

G(n,N) = i(n—s)(s—]\f)
s=N
Gn,N)=0 n<N

Let By be the Banach space of all real sequences Y = {y,}, with the norm

Y ||= sup | yn |< oo we define a closed, bounded and convex subset 2 of By as
n>ngo
follows:

Q={Y ={yn} € By kG(n,N) <y, <2kG(n,N), n> N,}
Define the map T : 2 — By as follows:

1
@

n—1 s—1 [e’s)
Ty =S 0-9[ S0+ S| azw

N N o=r (23)
Ty, =Tyn, N, <n<N

I) T maps Q into Q. For y,, € Q, then for n > N

n—1

Tyn > kZ(n— s)(s— N)é = kG(n, N)
N
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and
Tyn<Zn—s li(k’a—i—z%QkT >]
N
n—1 s—1 %o 0o o
<=9 |2 (K () Dl w]
%: l;( (a+1)(2a+1 >;q

<2kY (n—s)(s— N)= =2kG(n,N)
IT) T is continuous. Let y*) € Q such that klim | y® —y ||=0
— 00

(Ty"®),, — (Ty),,

s—1

S )]

N o=r

by using Lebesgue’s dominated convergence theorem, we can conclude that
lim || Ty Ty [|=0
n—o0

I1I) T is uniformly-cauchy, Vni,ns > N,

ng—1 s—1 e’} é
Tyn, = Tyny| = Y (n—s) [Z (k” +)° qg(ym))ﬁ)]
N N o=r

Y ) [Z (k 'y qg<y7(o)>ﬂ>]

N N o=r

’I’Lgl

)

Therefore, by the Schauder fixed point theorem, there exists a fixed Ty = v,
which satisfies (1.1). This completes the proof. O

o

Theorem 2. The equation (1.1) has a positive of type — I3 if and only if

oo

Z ngn(7(n))% < 0o (2.4)

n=ngo

Proof. Necessary. Suppose that (1.1) has a positive of type — I3, then, it satisfies
(1.4) for n > N, which implies that

oo

Z (’I’L - N)Qn(y‘r(n))B < o0

n=N
30
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This together with the asymptotic relation lim %3 = const > 0; shows that the

n—oo
condition (2.2) is satisfied.
Sufficiently. Suppose now that (2.2) holds. Let k& > 0 be any given constant.
Choose N > ng large enough so that

> iy < PGS 25)

Put N, = min{N, in]fvf(n)}. Let By be the Banach space of all real sequences
n>

Y = {y,}, with the norm || Y ||= sup | y» |< 0o we define a closed, bounded and
n>ng
convex subset ) of By as follows:

2
Q={Y ={y,} € By E(n—N)i <y, <k(n—N)%,n>N.}

where n — Ny =n—Nif n> N,and n— Ny =0if n < N. Define the map
T :Q — By as follows:

n—1 00 é

Ty, = Z (n - S) 2k — Z (T - S)qr(yr(r))ﬁ ) n>N
N r=s

Tyn =Tyn N.<n<N

The proof is similar to that of Theorem 1 and there exists an element y such that

y = Ty, which is a type — I3 solution of (1.1) with the property that lim Aoy, =
n—oo

2k > 0. This completes the proof. O

Theorem 3. The equation (1.1) has a positive of type — II; if and only if

> lZ@ —n)qs(T(s))B] <00 (2.6)

n=N Ls=n

Proof. Necessary. Suppose that (1.1) has a positive of type — 113, then, it satisfies
(1.4) for n > N, which implies that

oo

Z (TL - N)qn(y‘r(n))B <0
n=N

This together with the asymptotic relation lim In _ const > 0; shows that the

n—oo N
condition (2.6) is satisfied.
Sufficiently. Suppose now that (2.6) holds. Let k& > 0 be any given constant.
Choose N > ng large enough so that

[ee) [e'e) ey 8 B
5 [t ] <20t

n=N Ls=n
Put N, = min{N, in]fv 7(n)}. Let By be the Banach space of all real sequences
n>
Y = {yn}, with the norm || Y ||= sup |y»| < oo, we define a closed, bounded and

n>ng
convex subset € of By as follows:
Q={Y ={y,} € By kn <y, <2kn,n> N,}
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Define the map T : 2 — By as follows:

n—1 oo [ oo é
Ty, = kn + %: Z Z(U - T)qa(y‘r(a))ﬁ ) n=N (27)
Ty, = kn N.<n<N

The proof is similar to that of Theorem 1 and there exists an element y such that
y = Ty, which is a type — I1; solution of (1.1) with the property that lim Ay, =
n—oo

k > 0; This completes the proof. O

Theorem 4. The equation (1.1) has a positive of type — II3 if and only if

Z n [Z(S - n)qs] “ < 00 (2.8)

n=ng s=n

Proof. Necessary. Suppose that (1.1) has a positive of type — I3, then, it satisfies
(1.6) for n > N, which implies that

> |3 wnt)| < 29)

n=N s=n

This together with the asymptotic relation lim y,, = const > 0; shows that the
n—oo
condition (2.8) is satisfied.
Sufficiently. Suppose now that (2.8) holds. Let k > 0 be any given constant.
Choose N > ng large enough so that

1
o o0 [e% 1 7&
Z n [Z(S - n)stT(s)B] < §k1 < (210)

n=N s=n

Put N, = min{N, inﬁ; 7(n)}. Let By be the Banach space of all real sequences
n>

Y = {yn}, with the norm || Y ||= sup |yn| < oo, we define a closed, bounded and
n>ng
convex subset 2 of By as follows:

Q:{Y:{yn}EBN

Define the map T : 2 — By as follows:

Q=

Ty =k =30 = )| 2= harlvrc)”| "=V e

Tyn = Tyn N.<n<N
The proof is similar to that of Theorem 1 and there exists an element y such that

y = T'y, which is a type — II; solution of (1.1) with the property that lim Ay, =
n—oo
k > 0; This completes the proof. O
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Theorem 5. The equation (1.1) has a positive of type — I if

S g (m) 28 < oo (219
and -
> ngn(r(n)* = o0 (2.13)

Proof. Suppose now that (2.12) holds. Choose N > ng large enough so that

Z oo (r(n)) 2P < 2:“ <(a+ (2o + 1>) (2.14)

(0%
n=N

Put N, = min{N, inﬁ/ 7(n)}. Let By be the Banach space of all real sequences
n>
Y = {y,}, with the norm || Y ||= sup |y,| < oo, we define a closed, bounded and
n>ngo
convex subset  of By as follows:
1

1 2 241
Q={Y ={y,} € By 21Té(n—]\f)Jrgyngn"'a n > N.}

Define the map T : Q — By as follows:

1
n—1 1s=1 o :
T n = — = o\J1(o A ’ 2N
y %: (n—s) lz %j g;(a)q (¥r (o)) ] L= (2.15)
Ty, =0 N, <n<N

The proof is similar to that of Theorem 1 and there exists an element y such
that y = Ty, which is a type — I solution of (1.1) This completes the proof. O

Theorem 6. The equation (1.1) has a positive of type — I15 if

@

anz s—mn)gs(7(s ))ﬁ] < 00 (2.16)
and N
Z lZ(s — n)qs] =00 (2.17)

Proof. Suppose now that (2.16) holds. Choose N > ng large enough so that

1

a

ZH[Z s = n)gs(r(s ))ﬂ] <2wEITE (2.18)

Put N, = min{N, in]fVT(n)}. Let By be the Banach space of all real sequences
n>
Y = {y,}, with the norm || Y ||= sup |yn| < oo, we define a closed, bounded and

n>ng
convex subset € of By as follows:
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Define the map T : 2 — By as follows:

L
a

n—1 oo ]
Tyn=k+ 3> | > (0 — r)qff(yT(a))B ) n>N
N s lo=r (219)

Ty, =k N, <n<N

The proof is similar to that of Theorem 1 and there exists an element y such
that y = Ty, which is a type — 115 solution of (1.1). This completes the proof. [
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