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Abstract: The Weibull distribution is a well known and common distribu-
tion. In this article, a skewness parameter to a Weibull distribution is intro-
duced using an idea of Azzalini, which creates a new class of weighted Weibull
distributions. This new distribution has a probability density function with
skewness representing a general case of weighted probability density function
of the Extreme value distribution, the Rayleigh distribution and Exponential
distribution. Different properties of this new distribution are discussed and
the inference of the old parameters and the skewness parameter is studied.
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1. INTRODUCTION

The usefulness and applications of parametric distributions including the Weibull
distribution, the Raleigh distribution and the extreme value distribution in various
areas including reliability, renewal theory, and branching processes can be seen in
recent papers by several authors including Oluyede [19] and in references therein.
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A Class of Weighted Weibull Distributions and Its Properties

Weighted distributions are used to adjust the probabilities of the events as ob-
served and recorded. Patil and Rao [20] discussed how, for example, truncated
distributions and damaged observations can give rise to weighted distributions.

Azzalini [4] was the first to introduce the skew-normal distribution to incorpo-
rate a shape/skewness parameter to a normal distribution depending on a weighted
function denoted by F(aX) where « is a skewness parameter. Since then extensive
work has been done to introduce a skewness parameter to some symmetric distri-
butions, for instance skew-t, skew-Cauchy, skew-Laplace, skew-logistic. In general,
skew-symmetric distributions have been defined and several of their properties and
inference procedures have been discussed, see for example, Arnold and Beaver [3],
Gupta and Kundu [14] and the recent monograph by Genton [11]. Arnold and
Beaver [2] provided a nice interpretation of Azzalini’s skew-normal distribution as
a hidden truncation model, although the same interpretation may not be true for
other skewed distributions.

Actually, Azzalini’s method has been used extensively for several symmetric
distributions and non-symmetric distributions. In this article, it will be observed
that if we apply Azzalini’s method to the weibull distribution, then it produces a new
class of weighted weibull WW (), B8, «) distributions with an additional parameter
called “sensitive skewness parameter”. From now we denote a member of this new
class of weighted distributions as WW (), 8, ) distribution. The sensitive skewness
parameter governs essentially the shape of the probability density function of the
WW (A, B, ) distribution.

The main aim of this article is to introduce this distribution and study its prop-
erties. It will be observed that although the distribution has been obtained as a
WW (A, B, «) distribution, it has several other special cases and can be considered
as a hidden truncation model.

It can be seen that the WW (), 3, ) distribution function has a compact form
and all its moments can be computed explicitly, for instance mean, variance, skew-
ness, kurtosis, coefficient of variation, hazard function (HF), and mean residual
lifetime.

The rest of the article is organized as follows. In Section 2, we provide the defi-
nition of WW (A, 8, ) distribution. Different properties are discussed in Section 3,
also we introduce special cases by defining a weighted the Extreme value distribu-
tion, and a weighted Rayleigh distribution and a weighted Exponential distribution
in Section 4. The inference of old parameters and sensitive skewness parameter is
studied in Section 5.

2. DEFINITION OF WEIGHTED WEIBULL DISTRIBUTION

Let X be a non-negative random variable with an absolutely continuous distribution
function F'x and probability density function fx.
Let

Ix =inf{x e R: Fx(x) > 0},
ux =sup{z € R: Fx(z) < 1},
Sx ={z:lx <z <ux}.

Let w be a non-negative function defined on the real line. Suppose that the
realization x of X will be recorded with probability proportional to w(t(x)). Then
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the recorded t(z) is not an observation on X but it is an observation on the so-called
weighted random variable X |{w} with density function given by:

w(t(X))fx (x)
t

1ty () = e a3

for —oo <z < o0,
where 0 < E [w(t(X))] < oo.

The random variable X|{w} is called the weighted version of X, and its distri-
bution relative to X is called the weighted distribution of X with weight function
w. Let [x > 0 and w(t(z)) = z, x € Sx, for some positive integer. Then the
corresponding weighted distribution is called a size biased distribution. If this dis-
tribution is of order one, then it is simply called a length-biased distribution (see
Blumenthal [6], Gupta and Kirmani [12], Mahfoud and Patil [16]).

Now, the new class of weighted distributions is defined by the corresponding
density function:

Fx (ax)fx (x)
fX|{a}<.%‘) E [F(OzX)] , for x>0, ( )
with

w(t(z)) = Flazx).
According to (1) the new class of weighted Weibull distributions can be derived
as follows. Let X be distributed according to a Weibull distribution with parameters
A and (3, and density function as follow

1 o
fxipngy = ABzP e A (2)

where A is a scale parameter, /3 is a shape parameter. The distribution function of

X|{B,A}is

e
Fxjpp (@) =1—e 2",
Hence, we get
Fxiiapy(ax) =1 — e*)\(aaj)ﬁv
and
aP
E[Fxjpapy(aX)] = /IFxl{A,B}(oza:)fx|{,\,ﬁ}(x)dx =10p

Inserting into (1) yields

AB(1+ ozﬁ)acﬂfle”‘:‘cﬁ (1 — e’/\(w)ﬁ)
aP

and fx|x,8,a) () = 0 otherwise. The density function (3) is referred to as WW (A, 8, a).

Suppose X; and X, are two i.i.d. random variables with probability density
function fy and distribution function Fy. Then for any « > 0, and § = 2, consider
the new random variable X with X = X; given that aX; > X5. Azzalini [4]
obtained the weighted skew-normal distribution from two i.i.d. normal distributions
and Mahdy [15] obtained the weighted gamma distribution from two i.i.d. gamma
distributions as follows

Ix1np.03 (@) = , for x>0, (3)

1
; Px, x, ({($17x2) Taxr) > 1’2})
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Now, (1) can be obtained explicitly from (4) by inserting

2
Ixipnzy () = 2Ame ™,

2
Fxipaoy () =1 - e M,
and
oo ary a2
Px, x, {(z1,22) : axy > x2}) = / / fxy x5 (1, x2)daodr, = T a7
0 0

3. SOME PROPERTIES OF THE WW (A, 3, «) MODEL

In this section we study the WW (A, 8, «) distribution. Without loss of generality,
the density function of the WW (), 8, «) distribution is provided by (3). The graphs
of the density function of W for different values of « are displayed in Figure 1.
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Figure 1
Weighted Weibull Densities

It is easy to see that as «a increases, the skewness of the distribution increases.
If X is a random variable with probability density function WW (A, 5, @), then
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the kth moment of X|{\, 5, a} is given by

Ak/B k B
Eyww(x,8,0)(X") = o7 (1+a”)T <;B> (1 — (1+a”) (k+6)/ﬂ>‘ (5)

From (5),the first moment of WW (A, 8, «) is obtained:
A\~UB

—5 (1+a”)T (T) (1= (1 +af) ™7

Ewwg,0)(X) = oF
Similarly, the variance is obtained as

Vivw (x,8,0)(T) = a1 — az,

where,

A—2/B 2+ -
(1).a1 = EWW(A,ﬁ7a)(X2) =3 (1+ Ozﬁ) r (5 6) (1 -1+ o/’) (2+ﬁ)/6> , and

2
ATL/8 1+5 ~(148)/8
g 2
(zz).angWW(A’B,a)(X): l ; (l—l—aﬂ)I’( 5 (1—(1—}—046) ) )
Moreover, we get

A—3/8 34 )
Bww,p,0)(X°) = 5 (1+a”)T <Bﬁ> (1 —(1+0f) (3+/3)/B).

Some other measures, like the coefficient of variation CVyyyw (x g,q) of WW (A, B, @)
and the skewness coefficient Ty 11 5,o) can also be easily obtained in explicit forms:

(1+o”)T (1;6> (1 - (1+aﬁ)_1/ﬁ),

A\~U8

CViww o) (@) = (Var —az) /

and
S1 — S2
T a) — )
WW(\,B,a) (ar — a2)3/2
where
A3/8 3+ —(3+8)/8
ATV/B 1+8 —(1+8)/8
_3(a1—a2) oF (1—‘,—0[6)1—‘(5 >(1_(1+aﬂ) );

~1/8 3
82:</\alﬁ (1—&—0/3)F<1;ﬂ> (1—(1+0¢5)_(1+B)/ﬁ)> .

Next, we provide the distribution function, survival function, hazard function,
reversed hazard function, and mean residual life function for the WW (A, 8, «) dis-
tribution:
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(i). The distribution function Fyyy (x g,q) of WW (A, B, @) is given by

]. _ I[ﬂ _ a:B Ocﬁ
Furwn s (@) = = [(140) (1= ") 4 2" 0e) ]

(ii). The survival function FWW(A,BA) of WW (A, B, a) is given by

— 1 W g of
FWW(A,B,a)(T/):lfafﬁ[(lJraﬁ)(176 A )+e AP (14 )71}. (6)

(iii). The hazard function hyw( g,a) of WW (A, B, ) is given by

(1 + aﬁ) A\BxP 1 exp (f)\xﬁ) [1 — exp (f)\(xa)ﬂ)}
[(1+af)e 2" —exp(—Azf (1+aPf)) —a; +1]

hww (x,8,0) =
(iv). The reversed hazard function 7w (x g,q) of WW (A, B, ) is given by

A8 (1 + aﬁ) 2P—1e—A2" (1 — e_’\(m)ﬁ)
TWW(X,B,0) = (1+af) (1 — e %) 4 e 2P (o) 1

v). The mean reversed residual function myy(a g.) of WW (A, 5, ) is given
(\,B,2)
by
_ foz Fwwxs,0) (u)du

MWW (x,8,0) (%) = Fwwg,0)(T) ,

which equals to

Az 1zaf + (1+ of) (G’Azﬁ - efmﬁ(l*aﬁ))
mww 8.0 (@) = ABzB=1 (1 + aPf) (1 — e*”ﬁ) — A\pxh-1 (1 — e*M‘a(lJraB))'

It can be shown that myw(x g,q) is an increasing function of z.

Table 1 contains the values of survival function (6). Looking at this table we can
see that the survival probability of the distribution decreasing with increase in the
value of « for a holding = and A and 3 at a fixed level. Further, from the table we
can see that; for fixed a, A and 3; the survival probability decreases with increase
in .

4. SPECIAL CASES

4.1. The Weighted Extreme Value Distribution

In many fields of modern science, engineering and insurance, extreme value distri-
bution is well established (see e. g. Embrechts et al. [10], Reiss and Thomas [21]).
Recently, more and more research has been undertaken to analyze the extreme vari-
ations that financial markets are subject to, mostly because of currency crises, stock
market crashes and large credit defaults. The tail behavior of financial series has,
among others, been discussed in McNeil and Frey [18], Coles [7], Beirlant et al. [5],
Mandira [17], Cooley et al. [8] and Andjelic et al. [1]. An interesting discussion
about the potential of extreme value theory in risk management is given in Diebold
et al. [9].
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Table 1
Survival Function of Weighted Weibull Distribution for A=1; 3 =1

xr

a=1

a=12 a=14 oa=1.6

a=1.8

a=2

a=35

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1.1
1.2
1.3
14
1.5

0.990944
0.967141
0.932825
0.891311
0.845182
0.796429
0.746574
0.696761
0.600424
0.554939
0.51167
0.47079
0.432384
0.396473

0.990103
0.964309
0.927457
0.883268
0.83458
0.783542
0.731755
0.680399
0.58211
0.536162
0.492722
0.451918
0.413795
0.378336

0.989273
0.96155
0.922294
0.875625
0.824628
0.771586
0.718165
0.665559
0.565852
0.519664
0.476237
0.435657
0.397927
0.362992

0.988454
0.958862
0.917326
0.868361
0.81528
0.760484
0.705685
0.652078
0.551383
0.505123
0.461842
0.421585
0.384312
0.349935

0.987645
0.956243
0.912545
0.861454
0.806494
0.750166
0.694211
0.639813
0.538474
0.492267
0.449227
0.409354
0.372572
0.33876

0.986847
0.95369
0.907943
0.854883
0.798231
0.740568
0.68365
0.628634
0.526926
0.480865
0.438129
0.398677
0.362398
0.329141

0.976043
0.911138
0.855922
0.78624
0.717879
0.653109
0.592903
0.537549
0.44096
0.399173
0.361284
0.326956
0.295871
0.267732

Let random variable X has a Weibull distribution in (2), then the

probability density function of Y = —flog (X AP ) is given by

1 B
fyiig.ay (W) = %7;)

which is weighted extreme value distribution.

4.2. The Weighted Rayleigh Distribution

—y —e™ Y _aBe— Y
e Ve~ ° (1—6“6 ),

weighted

The Rayleigh distribution is an important distribution in statistics and operations
research. It is applied in several areas such as health, agriculture, biology, and other
sciences.

Let random variable Y has the weighted Rayleigh distribution W R(c, a), then Y’
has the weighted Weibull distribution WW ((1/0\/5)2, 2, ). Therefore, if w (t(z)) =
F(azx), the weighted Rayleigh distribution has an probability density function and
distribution function are given by

and

fy‘{(l/m/i)zz,a} )

FWR((I/U\/§)2,27<1) (v)

= (1+a?) (1 — exp (—O.S(y/o)z)) + exp (—0.5(y/0)2(1 + a2)) —1.
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4.8. The Weighted Exponential Distribution

The second distribution can be obtained following Gupta and Kundu [13] who
introduced a new weighted exponential distribution but not fixed A\. Suppose § =1
in (2), and then we get the density function of the weighted exponential distribution
of the random variable Y|{\, a} as

Iyitnay (W) = A(1+a)exp (=Ay) (1 —exp (—Aya)) /o, for y >0,

and fy|{x,q} otherwise also, the distribution function can be written as
1
Fwroe (y) = = [(1+a) (1 —exp (=Ay)) +exp (—Ay (1 +a)) —1].

5. PARAMETER ESTIMATION

This section is devoted to the estimation of the unknown parameter « in case 8 = 2.
For this case, the maximum likelihood and the moment estimator is derived and
their asymptotic distributions are given.

5.1. Maximum Likelihood Estimates

The weighted Weibull distribution is obtained by means of (3) in case § = 2. We
can write it as follows:

Ixitnay (@) =20 (14 ) zexp (—Az?) (1 — exp ( Azar) )) Ja?, for x> 0.
The likelihood function based on the observed sample {z1, z3,...,z,} is

L(z1,22, ..y Tn|\, @)
= 2"\"(1+a?)" "I 1xlexp< )\Zml ) ' (1 — exp (—)\(xia)2)> /a2, (7)

From (7) we obtain the log-likelihood function ¢ (21, za, ..., Zn|A, @):
l (xlv L2y eeny xn|)‘7 OZ)

= nln2—|—nln)\+n1n(l+a2)—Q—Zlnxi—)\zgv? ®)
i=1 i=1 8

+ Z In [1 — ef)‘(x“l)ﬂ —2nlnao.
i=1

For determining the maximum likelihood estimators (MLE) of A and «, the
expression (8) must be maximized with respect to A and a. Thus, firstly, the MLE
of X\ is obtained as a solution of the following fixed-point type equation:

g (A) = 9)
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where
g (5\> =C1 + 5\%,
Cl - nn ’
>}
i=1
Cy = Z (xioz)Q exp (*)\(l’ia)z)y
i=1
and

C3 = Zn:xf anln [1 — exp (—)\(xia)Q)} .

The solution of (9) can be obtained by a simple iterative procedure. Suppose
we start with an initial guess Ao, then the next iteration Ay can be obtained as
A1 = g(Ao), similarly, Ao = g(A1), and so on. Finally the iterative procedure should
be stopped when i — ;\i+1 < €, where € is a preassigned tolerance value.

Secondly, the MLE of « is obtained as a solution of the following fixed-point
type equation:

g(&)=a, (10)
where
g (d) = Sl - 527
1 ~2
Sl = ( —i:a )7
&
and .
(1+a%) > 2Aé(z;)% exp (—/\(a:id)2)

Sy = i=1

2ni§::1 In (1 —exp (—)\(xid)2>>

The solution of (10) can be obtained by a simple iterative procedure. Suppose
we start with an initial guess &g, then the next iteration &; can be obtained as
d1 = g(é&yp), similarly, &g = g(&1), and so on. Finally the iterative procedure should
be stopped when |&; — &;+1| < €, where € is a preassigned tolerance value.

5.2. The Moment Estimators

Next, we discuss the moment estimators of A and o when 8 = 2. If m? denotes the
second non-central moment, then by equating the second moment, we obtain the
moment estimator of « as

-1

0:%(1+a2) (1- (1+0%)) = m2.

Thus, the moment estimators of « can be obtained as a solution of the following
fixed-point type equation:

g(a) = a,
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where

the

f= () (1 (1402)?).
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