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Abstract: In this paper, we established a traveling wave solution by using
the proposed Tan-Cot function algorithm for nonlinear partial differential
equations. The method is used to obtain new solitary wave solutions
for various type of nonlinear partial differential equations such as, the
(2+1) - dimensional nonlinear Schrödinger equation, Gardner equation, the
modified KdV equation, perturbed Burgers equation, general Burger’s-Fisher
equation, and Benjamin-Bona-Mahony equation, which are the important
Soliton equations. Proposed method has been successfully implemented to
establish new solitary wave solutions for the nonlinear PDEs.
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1. INTRODUCTION

Large varieties of physical, chemical, and biological phenomena are governed by
nonlinear partial differential equations. One of the most exciting advances of
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nonlinear science and theoretical physics has been the development of methods to
look for exact solutions of nonlinear partial differential equations [1]. Exact solutions
to nonlinear partial differential equations play an important role in nonlinear
science, especially in nonlinear physical science since they can provide much physical
information and more insight into the physical aspects of the problem and thus
lead to further applications. Nonlinear wave phenomena of dispersion, dissipation,
diffusion, reaction and convection are very important in nonlinear wave equations.
In recent years, quite a few methods for obtaining explicit traveling and solitary
wave solutions of nonlinear evolution equations have been proposed. A variety of
powerful methods, such as, tanh-sech method [2–4], extended tanh method [5–7],
hyperbolic function method [8,9], Jacobi elliptic function expansion method [10],
F-expansion method [11], and the First Integral method [12,13]. The sine-cosine
method [3,14,15] has been used to solve different types of nonlinear systems of
PDEs.

In this paper, we applied the Tan-Cot method to solve the (2+1) - dimen-
sional nonlinear Schrödinger equation, Gardner equation, modified KdV equation,
perturbed Burgers equation, general Burger’s-Fisher equation, and Benjamin-Bona-
Mahony equation given respectively by:

iqt + aqxx − bqyy + c|q|2q = 0 (1)

ut − 6(u+ ε2u2)ux + uxxx = 0 (2)

ut − δu2ux + uxxx = 0 (3)

ut + auux + buxx = cu2ux + βuuxx + γ(ux)2 + δuxxx (4)

ut − aunux + buxx + cu(1− un) = 0 (5)

ut − uxxt + ux + uux = 0 (6)

2. THE TAN-COT FUNCTION METHOD

Consider the nonlinear partial differential equation in the form

F (u, ut, ux, uy, utt, uxx, uxy, uyy, ... ... ...) = 0 (7)

where u(x, y, t) is a traveling wave solution of nonlinear partial differential equation
Equation (7). We use the transformations,

u(x, y, t) = f(ξ) (8)

where ξ = x+ y − λt. This enables us to use the following changes:

∂

∂t
(·) = −λ d

dξ
(·) , ∂

∂x
(·) =

d

dξ
(·) , ∂

∂y
(·) =

d

dξ
(·) (9)

Using Equation (9) to transfer the nonlinear partial differential equation Eq.(7)
to nonlinear ordinary differential equation

Q(f, f ′, f ′′, f ′′′, ...) = 0 (10)

The ordinary differential equation (10) is then integrated as long as all terms
contain derivatives, where we neglect the integration constants. The solutions of
many nonlinear equations can be expressed in the form:

f(ξ) = α tanβ(µξ), |ξ| ≤ π

2µ
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or in the form
f(ξ) = α cotβ(µξ), |ξ| ≤ π

2µ
(11)

where α, µ, and β are parameters to be determined, µ and c are the wave number
and the wave speed, respectively. We use

f(ξ) = α tanβ(µξ)

f ′ = αβµ
[
tanβ−1(µξ) + tanβ+1(µξ)

]
f ′′ = αβµ2

[
(β − 1) tanβ−2(µξ) + 2β tanβ(µξ) + (β + 1) tanβ+2(µξ)

]
f ′′′ = βµ3α

[
(β − 1)(β − 2) tanβ−3(µξ) + (3β2 − 3β + 2) tanβ−1(µξ)

+ (β + 1)(β + 2) tanβ(µξ) + 2β2 tanβ+1(µξ) + (β + 1)(β + 2) tanβ+2(µξ)
]

(12)

and their derivative. Or use

f(ξ) = α cotβ(µξ)

f ′ = −αβµ
[
cotβ−1(µξ) + cotβ+1(µξ)

]
f ′′ = αβµ2

[
(β − 1) cotβ−2(µξ) + 2β cotβ(µξ) + (β + 1) cotβ+2(µξ)

] (13)

and so on. We substitute (12) or (13) into the reduced equation (10), balance the
terms of the tan functions when (12) are used, or balance the terms of the cot
functions when (13) are used, and solve the resulting system of algebraic equations
by using computerized symbolic packages. We next collect all terms with the same
power in tank(µξ) or cotk(µξ) and set to zero their coefficients to get a system of
algebraic equations among the unknown’s α, µ and β, and solve the subsequent
system.

3. APPLICATIONS

3.1. Schrödinger Equation

Let us first consider the (2+1) - dimensional nonlinear Schrödinger equation (16)
that reads:

iqt + aqxx − bqyy + c|q|2q = 0 (14)

where a, b and c are nonzero constants. Firstly, we introduce the transformations

q(x, y, t) = e(iθ) · u(ξ), θ = αx+ ωy + δt, ξ = k(x+ ly − λt) (15)

where α, ω, δ, k, l and λ are real constants. Substituting Equation (15) into
Equation (14), we obtain the λ = 2(aα− bωl) and u(ξ) satisfy into the ODE:

−(δ + aα2 − bω2)u(ξ) + (a− bl2)k2u′′(ξ) + c(u(ξ))3 = 0 (16)

Rewrite this second-order ordinary differential equation as follows:

u′′ + k1u
3 − k2u = 0 (17)

Where

k1 =
c

(a− bl2)k2
, k2 =

δ + aα2 − bω2

(a− bl2)k2
(18)
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Seeking solutions of the form (12) we get:

αβµ2
[
(β − 1) tanβ−2(µξ) + 2β tanβ(µξ) + (β + 1) tanβ+2(µξ)

]
+k1α

3 tan3β(µξ)− k2α tanβ(µξ) = 0
(19)

Equating the exponents and the coefficients of each pair of the tan functions we
find the following algebraic system:

β + 2 = 3β then β = 1

αβµ2(β + 1) + k1α
3 = 0

2αβ2µ2 − k2α = 0

(20)

By solving the algebraic system (20), we get

α = ∓i

√
δ + aα2 − bω2

c
, µ = ∓

√
δ + aα2 − bω2

2(a− bl2)k2
(21)

Then by substituting Equation (21) into Equation (12) then, the exact soliton
solution of equation (14) can be written in the form:

u(ξ) = ∓i

√
δ + aα2 − bω2

c
tan

∓
√
δ + aα2 − bω2

2(a− bl2)
(x+ ly − λt)

 (22)

Therefore

q(x, y, t) = ∓i

√
δ + aα2 − bω2

c
tan

∓
√
δ + aα2 − bω2

2(a− bl2)
(x+ ly − λt)

 ei(αx+ωy+δt)

(23)
for α = ω = δ = k = l = 1, a 6= b, a = c = 1, b = .5 and (23) becomes:

q(x, y, t) = ∓i

√
3

2
tan

∓
√

3

2
(x+ y − t)

 ei(x+y+t) (24)

3.2. Gardner Equation

Consider the Gardner equation [17,18]

ut − 6(u+ ε2u2)ux + uxxx = 0 (25)

This equation known as the mixed KdV-mKdV equation is very widely studied
in various areas of Physics that includes Plasma Physics, Fluid Dynamics, Quantum
Field Theory, Solid State Physics and others [18].

We introduce the transformation ξ = k(x−λt), where k, and λ are real constants.
Equation (25) transforms to the ODE:

−kλu′ − 3k(u2)′ − 2ε2k(u3)′ + k3u′′′ = 0 (26)
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Integrating (26) once with zero constant to get the following ordinary differential
equation:

λu+ 3u2 + 2ε2u3 − k2u′′ = 0 (27)

Seeking the solution in (13)

λα cotβ(µξ) + 3α2 cot2β(µξ) + 2ε2α3 cot3β(µξ)

−αβµ2k2
[
(β − 1) cotβ−2(µξ) + 2β cotβ(µξ) + (β + 1) cotβ+2(µξ)

]
= 0

(28)

Equating the exponents and the coefficients of each pair of the cot functions we
find the following algebraic system:

3β = β − 2 → β = −1 (29)

Substituting Equation (29) into Equation (28) to get:

λα cot−1(µξ) + 3α2 cot−2(µξ) + 2ε2α3 cot−3(µξ)

−αβµ2k2
[
(β − 1) cot−3(µξ) + 2β cot−1(µξ)

]
= 0

(30)

Equating the exponents and the coefficients of each pair of the cot function, we
obtain a system of algebraic equations:

cot−3(µξ) : 2ε2α3 − 2αµ2k2 = 0

cot−2(µξ) : 3α2 = 0

cot−1(µξ) : λα− 2αµ2k2 = 0

(31)

By solving the algebraic system (31), we get,

λ = 2µ2k2, α = ∓
kµ

ε
(32)

Then by substituting Equation (32) into Equation (12), the exact soliton solution
of equation (27) can be written in the form

u(x, t) = ∓
kµ

ε
tan

(
µk(x− 2µ2k2t)

)
, 0 < µk(x− 2µ2k2t) < π (33)

For µ = k = ε = 1, then (33) becomes:

u(x, t) = tan(x− 2t) (34)

u(x, t) in (34) is represented in Figure 1 for −10 ≤ x ≤ 10 and 0 ≤ t ≤ 1.

3.3. Dispersive Equation

Consider the (1+1) - dimensional nonlinear dispersive equation

ut − δu2ux + uxxx = 0 (35)

where δ is a nonzero positive constant. This equation is called the modified KdV
equation [19], which arises in the process of understanding the role of nonlinear
dispersion and in the formation of structures like liquid drops, and it exhibits

17



New Exact Solutions of Nonlinear Partial Differential Equations Using Tan-Cot
Function Method

Figure 1
Represents u(x, t) in (34) for −10 ≤ x ≤ 10 and 0 ≤ t ≤ 1

compaction solitons with compact support. To find the traveling wave solutions
of Equation (29), [19] used G′/G expansion Method.

Let us now solve Equation (35) by the proposed method. We introduce the
transformation ξ = k(x − λt), where k and λ are real constants. Equation (35)
transforms to the ODE:

−kλu′ −
δ

3
k(u3)′ + k3u′′′ = 0 (36)

Integrating (36) once with zero constant to get the following ordinary differential
equation:

λu+
δ

3
u3 − k2u′′ = 0 (37)

Seeking the solution in (13)

λα cotβ(µξ) +
δ

3
α3 cot3β(µξ)

−αβµ2k2
[
(β − 1) cotβ−2(µξ) + 2β cotβ(µξ) + (β + 1) cotβ+2(µξ)

]
= 0

(38)

Equating the exponents and the coefficients of each pair of the cot functions we
find the following algebraic system: 3β = β + 2 → β = 1

cot3(µξ) :
δ

3
α3 − αβµ2k2(β + 1) = 0

cot1(µξ) : λα− αβ2µ2k2 = 0

(39)

By solving the algebraic system (39), we get

λ = µ2k2, α = ∓

√
6

δ
kµ (40)
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Then by substituting Equation (40) into Equation (13), the exact soliton solution
of Equation (35) can be written in the form

u(x, t) = ∓

√
6

δ
kµ cot

(
µk(x− µ2k2t)

)
, 0 < µk(x− µ2k2t) < π (41)

For µ = k = δ = 1, Equation (41) becomes

u(x, t) = ∓
√

6 cot(x− t) (42)

u(x, t) in (42) is represented in Figure 2 for −10 ≤ x ≤ 10 and 0 ≤ t ≤ 1.

Figure 2
Represents u(x, t) in (42) for −10 ≤ x ≤ 10 and 0 ≤ t ≤ 1

3.4. Perturbed Burgers Equation

In this section the study is going to be focused on the perturbed Burgers equation.
The solitary wave ansatz method will be adopted to obtain the exact 1-soliton
solution of the Burgers equation in (1+1) dimensions. The search is going to be for
a topological 1-soliton solution. The perturbed Burgers equation that is given by
the following form [20]:

ut + auux + buxx = cu2ux + βuuxx + γ(ux)2 + δuxxx (43)

Equation (43) appears in the study of gas dynamics and also in free surface
motion of waves in heated fluids. The perturbation terms are obtained from long-
wave perturbation theory. Equation (43) shows up in the long-wave small-amplitude
limit of extended systems dominated by dissipation, where dispersion is also present
at a higher order [20].

To solve Equation (43) by the proposed method. We introduce the transforma-
tion ξ = k(x− λt), where k, and λ are real constants. Equation (43) transforms to
the ODE:

−[λ− au+ cu2]u′ + [bk − dku]u′′ − γk(u′)2 − δk2u′′′ = 0 (44)
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Seeking the solution in (12)

− αβµ
[
λ tanβ−1(µξ)− aα tan2β−1(µξ) + cα2 tan3β−1(µξ)

]
− αβµ

[
λ− aα tan2β+1(µξ) + cα2 tan3β+1(µξ)

]
+ αβµ2bk

[
(β − 1) tanβ−2(µξ) + 2β tanβ(µξ) + (β + 1) tanβ+2(µξ)

]
− αβµ2dka

[
(β − 1) tan2β−2(µξ) + 2β tan2β(µξ) + (β + 1) tan2β+2(µξ)

]
− γkα2β2µ2

[
tan2β−2(µξ) + 2 tan2β(µξ) + tan2β+2(µξ)

]
− δk2βµ3α

[
(β − 1)(β − 2) tanβ−3(µξ) + (3β2 − 3β + 2) tanβ−1(µξ)

+ (β + 1)(β + 2) tanβ(µξ) +2β2 tanβ+1(µξ) + (β + 1)(β + 2) tanβ+2(µξ)
]

= 0

(45)

From (45), equating exponents 2β − 2 and 3β − 1 yield

2β − 2 = 3β − 1, so that β = −1 (46)

It needs to be noted that the same value of β is obtained when the exponent
pairs β − 2 = 2β − 1, 2β − 2 = β − 3 are equated, thus setting their coefficients to
zero yields:

λ+ cα2 − 2µdkα− 2γαkµ+ 8δk2µ2 = 0

cα2 − 2µdkα− γαkµ+ 6δk2µ2 = 0

− aα+ 2µbk = 0

λ− γαkµ = 0

(47)

By solving the algebraic system (47), we get

δ =
b

3a2
[2da− 2cb+ γa] , α =

2µbk

a
, λ = 2

b

a
γk2µ2 (48)

Then by substituting Equation (48) into Equation (12), the exact soliton solution
of equation (43) can be written in the form

u(x, t) =
2bk

a
µ cot

[
µk(x− 2

b

a
γk2µ2t)

]
(49)

for µ = k = a = b = 1, γ = −1

u(x, t) = 2 cot(x+ 2t) (50)

Figure 3 represents u(x, t) in (50) for −10 ≤ x ≤ 10 and 0.1 ≤ t ≤ 1.

3.5. The General Burgers-Fisher Equation

Consider the following general Burger’s-Fisher equation [21]

ut − aunux + buxx + cu(1− un) = 0 (51)

where a, b and c are nonzero constants. We introduce the transformation ξ =
k(x−λt), where k, and λ are real constants. The traveling wave variable ξ permits
us converting Equation (51) into the following ODE:

−λku′ + akunu′ + bk2u′′ + cu− cun+1 = 0 (52)
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Figure 3
Represents u(x, t) in (50) for −10 ≤ x ≤ 10 and 0.1 ≤ t ≤ 1

Seeking the solution in (12)

− λkαβµ
[
tanβ−1(µξ) + tanβ+1(µξ)

]
+ akαn+1βµ

[
tan(n+1)β−1(µξ) + tan(n+1)β+1(µξ)

]
+ bk2αβµ2

[
(β − 1) tanβ−1(µξ) + 2β tanβ(µξ) + (β + 1) tanβ+2(µξ)

]
+ cα tanβ(µξ)− cαn+1 tan(n+1)β(µξ) = 0

(53)

From (53), equating exponents (n+ 1)β + 1 and β + 2 yield

(n+ 1)β + 1 = β + 2 (54)

so that

β =
1

n
(55)

Equating exponents β + 1 and (n+ 1)β and the pairs (n+ 1)β − 1 and β gives
the same value of β in (55), so that substitute (55) in (53) then

− λkαβµ
[
tan

1
n−1(µξ) + tan

1
n+1(µξ)

]
+ akαn+1βµ

[
tan

1
n (µξ) + tan

1
n+2(µξ)

]
+ bk2αβµ2

[
(β − 1) tan

1
n−2(µξ) + 2β tan

1
n (µξ) + (β + 1) tan

1
n+2(µξ)

]
+ cα tan

1
n (µξ)− cαn+1 tan

1
n+1(µξ) = 0

(56)

Thus setting the coefficients of the same pairs to zero yields:

cαn+1 + λkαβµ = 0

2bk2αβ2µ2 + akαn+1βµ+ cα = 0

bk2αβ(β + 1)µ2 + akαn+1βµ = 0

(57)
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By solving the algebraic system (57), we get

λ =
b2k2µ2

an2
(n2 − 1), c =

bµ2k2

n2
(n− 1), α =

(
−
bk(n+ 1)µ

an

) 1
n

(58)

Then by substituting (58) into Equation (12), the exact soliton solution of
Equation (51) can be written in the form

u(x, t) =

[
−
bk(n+ 1)µ

an
tan

{
µk

(
x−

b2k2µ2

an2
(n2 − 1)t

)}] 1
n

(59)

It is worth noting that the proposed Tan-Cot function method is applicable here
if n does not equal to 1.

3.6. Benjamin-Bona-Mahony (BBM) Equation

Consider the BBM equation [22]

ut − uxxt + ux + uux = 0 (60)

We introduce the transformation ξ = k(x−λt), where k, and λ are real constants.
The traveling wave variable ξ permits us converting Equation (60) into the following
ODE:

k2λu′′′ + [1 + u− λ]u′ = 0 (61)

Seeking the solution in (12)

k2λβµ3α
[
(β − 1)(β − 2) tanβ−3(µξ) + (3β2 − 3β + 2) tanβ−1(µξ)

+ (β + 1)(β + 2) tanβ(µξ) + 2β2 tanβ+1(µξ) + (β + 1)(β + 2) tanβ+2(µξ)
]

+ αβµ(1− λ){tanβ−1(µξ) + tanβ+1(µξ)}+ α2βµ{tan2β−1(µξ) + tan2β+1(µξ)} = 0

(62)

From Equation (62), equating exponents β − 3 and 2β − 1 yield

β − 3 = 2β − 1 (63)

so that
β = −2 (64)

equating exponents of the pairs β − 1 and 2β + 1 gives the same value of β in (58),
so that substitute (64) in (62) then setting coefficients of the same pairs in (62) to
zero yields:

k2λµ2(β − 1)(β − 2) + α = 0

k2λµ2(3β2 − 3β + 2) + 1− λ+ α = 0

2β2k2λµ2 + 1− λ = 0

(65)

By solving the algebraic system (65), we get

α = −
12k2µ2

1− 8k2µ2
, λ =

1

1− 8k2µ2
(66)
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Then by substituting Equation (66) into Equation (12), the exact soliton solution
of equation (60) can be written in the form

u(x, t) = −
12k2µ2

1− 8k2µ2
cot2

[
µk

(
x−

1

1− 8k2µ2
t

)]
(67)

For k = µ = 1, Equation (67) becomes:

u(x, t) =
12

7
cot2

(
x+

1

7
t

)
(68)

u(x, t) in (68) is represented in Figure 4 for −4 ≤ x ≤ 4 and 0.1 ≤ t ≤ 1.

Figure 4
Represents u(x, t) in (68) for −4 ≤ x ≤ 4 and 0.1 ≤ t ≤ 1

4. CONCLUSION

In this paper, new method called the Tan-Cot function method has been successfully
implemented to establish new solitary wave solutions for various types of nonlinear
PDEs. We can say that the new method can be extended to solve the problems of
nonlinear partial differential equations which arising in the theory of solitons and
other areas [23–29].
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