
ISSN 1923-8444 [Print]
Studies in Mathematical Sciences ISSN 1923-8452 [Online]
Vol. 5, No. 1, 2012, pp. [41–48] www.cscanada.net
DOI: 10.3968/j.sms.1923845220120501.1366 www.cscanada.org

Compare Inverse Matrix Between Sequential and

Parallel for Multithreading with Queueing

Network

I.A. Ismail[a], G.S. Mokaddis[b], S.A. Metwally[b] and

Mariam K. Metry[c],*

[a] Department of Computer Science, Faculty of Computer Science and Information
System, 6 October University, Cairo, Egypt.

[b] Department of Mathematics, Faculty of Science, Ain Shams University, Cairo,
Egypt.

[c] Researcher of Queueing Systems & Parallel programming and Engineer software
of AOI Cairo, Egypt.

* Corresponding author.
Address: Researcher of Queueing Systems & Parallel programming and Engineer
software of AOI Cairo, Egypt; E-Mail: mari25eg@yahoo.com

Received: June 16, 2012/ Accept: August 15, 2012/ Published: August 31, 2012

Abstract: This work deals with minimizing the computing time for matrix
inversions used in the queueing system models or otherwise. The time is
reduced considerably and is proportional to the number of the used threads
in parallel.
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1. INTRODUCTION

The inverse matrix frequently used in queueing parallel model by using multithread-
ing software. Queueing for multithreading is useful in reducing the latency by
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switching among a set of threads in order to improve the processor utilization.
Closed queueing network model is suitable for large number of job arrivals [5]
and [2]. Performance measures such as average response times and average system
throughput are derived to against the total number of processors in the closed
queueing network model. The model is validated by comparison of analytical
parallel and sequential result.

2. DESCRIPTION INVERSE MATRIX

2.1. By Partitioning for Inverse Matrix

The matrix inversion is given for nonsingular numerical matrix A, we can partition
A into four sub matrices: Where r = n/2

A =

[
α11(r, r) α12(r, r)
α21(r, r) α22(r, r)

]
The orders of the sub matrices are indicated in parentheses; and, n is the order

of square matrix A. We seek the inverse in the form of a four block matrices A−1

also

A−1 =

[
β11(r, r) β12(r, r)
β21(r, r) β22(r, r)

]
Then, since AA−1 = E, by multi-plying the matrices we get four matrix equations

β11α11 + β12α21 = Er,
β11α12 + β12α22 = 0,
β21α11 + β22α21 = 0,
β21α12 + β22α22 = Es,

(1)

where Er and Es are the unit matrices of appropriate orders. Solving this system,
we determine the blocks of matrix A−1. In solving in Equation (1).

β11 = α11
−1 +Xθ−1Y,

β12 = Xθ−1,
β21 = Y θ−1,
β11 = θ−1.

From Equation (1) demine the blocks of matrix A−1 in the following scheme:

α21 α22

X = α−121 α22 α−111 α12

θ−1 Y = α21α
−1
11 θ = α−Y22 α12

and the finial inverse matrix A−1 is given as follows

A−1 =

[
α11 − 1 +Xθ−1Y −Xθ−1

−θ−1Y θ−1

]
(2)
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2.2. Solving Systems for Inverse Matrix

Let the matrix is solving linear systems for determining non zero and numerical
be non singular. A frequently quoted test for invertability of matrix is based
on the concept of the determinant. [A] is invertible if and only if [A] 6= 0.
Numerical method solving linear systems may be divided into two types direct
and textbfiterative [8]. Computing the inverse matrix in queueing network model is
obtained by solving linear equations with constant vector under where [A][X] = Ii
instantaneously where Ii is the unit vector with ith row= 1,

I1 =


1
0
0
0

 ; I2 =


0
1
0
0

 ; I3 =


0
0
1
0

 ; I4 =


0
0
0
1

 .

3. PARALLEL PROGRAMMING MODEL

Mathematical methods and simulation are used to analyze various architectural
solutions in MTA (Mean Thread Architectural) design. A few attempts of MTA
mathematical evaluation of block multithreaded have resulted in deterministic
analytical models and queuing models [7,9]. A technique of analytical modeling
of such is mainly based on the MTA consideration of a set of thread states and
state transitions.

3.1. Data Dependency Analysis

Dependency among program segments arises from primarily three sources:

(a) Control,

(b) Data and

(c) Resources.

3.2. Threads Model

Multithreading is similar to multiprocessing programming [1,6]. It is to be born
in mind that the number of threads was taken into consideration equals the
number of servers or queues considered. The difference is that a multithreaded
program has a single processor which manages multiple threads of control executing
asynchronously. The threads library provides function calls to calls to create
threads, control threads, terminate threads, control access to shared data through
locking mechanisms, generate events and wait for events.

3.3. Program Transformations

We have identified the dependencies in a program, comes the issue of whether we
can overcome the dependencies so that the program is queueing parallel execution.
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4. THE PERFORMANCE MEASURES OF QUEUEING
PARALLEL COMPUTING

We can be described the performance measures of queueing parallel computing
under MTA [3,4,7]. We note that the number of threads = the number of servers
= N .

4.1. Queue Lengths

The probability that there are k or more job i is given by

P (Ni) = ρki
C(N − 1)

C(N)
; i ≥ k (3)

The average queue length at i in the system is given by:

E[Li(N)] =

N∑
i=1

ρi
C(N − 1)

C(N)
(4)

The expected total number of servers (threads) in the system: L =
m∑
i=1

E[Li(N)] +
n∑

j=1

E[L′j(N)]

L =
1

C(N)

 m∑
i=u

N∑
u=1

(
Pi

Plµi
)
u

C(N − 1) +

n∑
j=l

N∑
u=1

(
P ′j
Plµ′j

)
u

C(N − 1)

 (5)

4.2. Response Time

The average response time of task in node j is given by

Rsys =
E[Li(N)]

λi
=

1

λ0Pi

N∑
l=1

(ρj)
C(N − 1)

C(N)

Rsys =
E[Li(N)]

λi
=

1

λ0Pi

N∑
l=1

(
P ′j
P1µ′j

)
C(N − 1)

C(N)
(6)

where ∀i = 1, 2, ...,m, ρj =
P0

λP ′j
. The total response time of the system is given

by

Rs =

m∑
i=1

Rsysi +

n∑
j=1

Rsysj

Rs =
P0

λ

 m∑
i=1

N∑
u=1

(
ρui
Pi

)
C(N − 1)

C(N)
+

n∑
j=1

N∑
u=1

(ρ′j)
u

P ′j

C(N − 1)

C(N)

 (7)
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4.3. Waiting Times

The total waiting time in the system is given by

E[Ws] =

m∑
i=1

(ρui
C(N − 1)

C(N)
− 1

µj
) +

n∑
j=1

(
Po

λP ′j

N∑
i

(ρ′j)
C(N − 1)

C(N)
− 1

µj
) (8)

5. NUMERICAL RESULTS

Using double precision 32 Bits in the processor in matlab programming.

Specifications

Processor Min. Intel (R) Core(TM) i7-2600 3.4 GHz Processor
Memory(Ram) 8 GB DDR3
Storage Min. 2 TB SATA III/7200
Operating System Windows Starter Edition License (Media is not required)

This is the specifications of my personal computer (PC). We studied theop-
erations of the 4 × 4 dimensional inverse matrix mathematics and four threads.
Show the analytical results MAT both sequential computing (simulation technique)
and parallel computing for multithreading in computer system by using matlab
programming. We start determining the inverse of our 4 × 4 matrix by solving

Ax = bi, where bi is the column matrix =



0
0
...
1
0
0
0


The number 1 lies in the ith row. Thus, we have to solve n linear systems from

i = 1 to n. Each solving represent of column of the required matrix A−1.
Observing the above steps are independent we can execute them in queueing

parallel. Each step includes the computation of one column of the inverse matrix,
to finally get the columns of the inverse matrix simultaneously.

The following example on finding the inverse of 4× 4 matrixes is:

A =


1 0 5 6
2 3 0 4
1 4 2 2
1 1 2 1


The inverse matrix is above method to this matrix A−1, we get

A−1 =


−0.2278 −0.0506 0.0633 0.1519
0.3291 −0.0380 −0.2025 0.1139
−0.5190 0.3291 0.0881 0.0127
1.0886 −0.2025 0.2532 −0.3924


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We compute the response time of the inverse matrix in queueing network model
by three methods in Table 1 and Figure 1.

Table 1
Compute the Response Time per Second RS

Sequential Parallel

Partitioning inverse 1.789 0.9482

Linear solving systems 1.3432 0.7531
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Figure 1
Compute the Response Time per Second

We compute the waiting of the inverse matrix in queueing network model by
three methods in Table 2 and Figure 2.

Form the above results for the case of 4 × 4 dimensional inverse matrix
mathematics with constant vector matrix. It turns out that using fourth thread.
Finding the linear solving systems is the best partitioning inverse systems.

In general the 4 × 4 dimensional matrix mathematics under four threads,
we proved the parallel computing is the better than the sequential (simulation)
technique of using inverse matrix for multithreading in queueing theory. The parallel
queueing model is the fastest running time and to reduce waiting time or elapsed
time for multithreading of queueing theory in computer system (CPU).

6. CONCLUSIONS

By adopting the parallel computing for inverting n × n matrices, we could see
that the time needed to compute the inverse is much less than the standard used
methods. Therefore, using thistechnique in multiserver queueing system minimizes
the computing time considerably. Finally, the optimum number of multithreading
model for inverting n× n matrices achieves to minimize waiting (elapsed) time per
microseconds under increasing the total number of processors of computer system
(CPU).
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Table 2
Compute the Waiting Time per Microsecond E[WS]

Sequential Parallel

Partitioning inverse 5840 1865

Linear solving systems 2000 1300
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Figure 2
Compute the Waiting Time per Microsecond
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