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Abstract
In this paper we investigate a new type of ridges and ravines of the configuration space corresponding to 
an equiform motion in the Euclidean space R3. Necessary and sufficient conditions for the existence of 
generalized ridges and ravines are expressed as a partial differential inequalities involving the principal 
curvatures. For special case we obtain the solution of the differential equations which characterize some
type of singularities. The singularities are displayed through figures [1, 2, 3].
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1.  INTRODUCTION

Recent advances in pattern recognition, computer vision, medical imaging, and free-from shape design 
inspired a fresh interest in surface features associated with singularities of the intrinsic geometric quantities 
on the surface. Intrinsic geometry has been proposed and studied for smoothing surfaces or getting a 
hierarchical description of surfaces[4,5]. Therefore, in order to describe a shape (think of wrinkles on a face 
or think of the nose as a feature of facial shape) we use a characterization of a certain types of singularities 
of a shape. The simplest example of singularities is given by the smoothing of a plane curve by its curvature. 
The main features of a plane curve are its points of inflections where the curvature is zero and the vertices 
where the curvature has a local maximum or minimum. For surfaces there are two principal curvatures 
and the features will be interested depend on the parabolic curves where one of these curvature is zero (the 
Gaussian curvature vanishes), the ridge or ravine curves where are them have a maximum or minimum on 
its corresponding line of curvature and umbilic points where they are equal. Parabolic points are associated 
with inflections on object contours. Ridge and ravine curves are very important for shape recognition. In 
particular, the principal curvatures are non differentiable functions at umbilic points, hence umbilics will 
become singular points depending on the variation of the principal curvatures. At parabolic points the 
Gaussian curvature of a surface vanishes. They are the boundaries between elliptic and hyperbolic regions. 
Alternatively, they are the points where the tangent planes have a specially higher order contact with the 
surface [6]. Parabolic points can be classified into two regions D1 and D2 as follows: a point is called a D1 - 
parabolic point if the larger principal curvature, say k1, is zero; likewise and a D2 - parabolic point is where 
the smaller principal curvature k2 equal zero. A more degenerate type is the flat umbilic, where k1 =k2 = 0. If 
the surface is closed and oriented so that the curvature is positive at convex regions, then the D2 - parabolics 
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are the boundary between convex elliptic regions and hyperbolic regions and the D1 - parabolics are the 
boundaries of the concave elliptic regions.

2.  CNFIGURATION SPACE

It's well-known that the similar (equiform) motion is defined as Rigid motion with scaling. This motion can 
be represented by a translation vector T and a rotation matrix A as the following:

                                                     (1)

where At A = AAt = I and  is the scaling factor [3] and [10]. Also the space of all possible rigid 
transformations of an object constitute the configuration space of the motion.

Thus the configuration space is defined as the space of all directions of any system. This space has
the structure of a manifold which is called configuration manifold of the motion. From (1), it is easy to see 
that the similar motion can be defined through a linear mapping as in the following:

                 (2)

The linear map (2) in question may be defined explicitly in the 3-dimensional Euclidean space as

                (3)

for some fixed parameter ub and = 1, 2.
Without loss of generality, we consider the following representation of (3) as follows:

                (4)

where x = x (u1) is a regular representation of a curve C (the profile curve) in the plane  x z (y = 0) in 
R3, Rz (u

2) is the rotation matrix around z - axis,  (u2) is the equiform factor and T is the translation vector. 
In this construction the matrix Rz (u

2) is given as

The configuration space (4) has several forms as the following:
(i) Natural rigid motion, 1, T = const. .
(ii) Natural rotation 1, T = 0
(iii) Generalized rigid motion along rotation axis, 1, T = T(u2).
(iv) Helical motion 1, T = au1, a = const..
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Consider the motion for which the displacement along z - axis, i.e.

         (5)

Thus, we have the parametric representation of the motion under consideration as follows:

           (6)

where

3.  INTRINSIC GEOMETRY OF THE CONFIGURATION SPACE

The representation (6) characterizes a surface in the Euclideon space R3. The metric properties on the surface 
is given from the metric tensior gbwhere

           (7)

The function  (u1, u2) > 0 represents the arc length on the profile curve. Thus the metric on the 
configuration space of the generalized equiform motion is given by

                               (8)

The normal vector field on the configuration space (6) is defined as

(9)
The singularities on the configuration space (6) of the generalized equiform motion is given from g = 0 or 
equivalently

           (10)

Remark 1.
There is no singularity on the natural rotation (= 1, t =0 ) because of the condition (10) does not satisfied 
in this case.
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Remark 2.
The singularities occur in the case of the generalized rigid motion (= 1) if t" < 0.

The singularities on the configuration space (6) are displayed in Fig. 1, 2 in the case  const. 
In these figures, the singularities are illustrated through the configuration space and its Gauss map 
G : N S2 (1) in Fig. 3, 4 respectively for all the points of the configuration space. The components of the 
curvature tensor (the 2nd fundamental quantities ) are given as <xb , N >= Lb or explicitly

           (11)

where

           (12)

is the curvature of the profile curve c : x (u1) = (f (u1),0,h(u1)) and

    (13)

Thus the determinant of the 2nd fundamental tensor Lb is given from

        
           (14)

where

     (15)

The Gaussian curvature of the surface (6) corresponding to the configuration space of the generalized 
equiform motion is given from

           (16)

where k1, k2 are the principal curvatures of the surface at an arbitrary point (u1, u2).
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4. RIDGES AND RAVINES

A ridge point is a point where the surface has a higher order contact with one of the osculating spheres, or 
equivalently, where the principal curvature has an extreme value along the corresponding line of curvature. 
Ridge points can also be classified into two types according to the maximum (Ridge) or minimum (ravine) 
values of the principal curvature [7,8,9].

The Gaussian curvature G is a function of two variables, so the singularities (critical or extremes) are 
defined from

 
           (17)

We call these singularities the generalized ridge or Ravines of the equiform motion depending on the 
extremes of the principal curvatures as we shall show in the following. 

From (17) we have

           (18)

Or equivalently (g  0, 0)
 

           (19)

By integration we have

           (20)

           (21)

Thus, we have the proof of the following:

Theorem 1. The relations (20) and (21) are the necessary conditions for the existence of singularities of the 
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Gaussian curvature.
In the natural rotation (t = 0, 1) it is easy to see (u1), g = g (u1) but from (20) we have  

which gives a contradiction because of, in this case, the singularities are depend on the profile

curve only, i.e. on the parameter u2. Thus we have:

Theorem 2. The necessary condition for singularities of the configuration space corresponding to the natural 
rotation (1) is given from the condition  only.

To determine the type of singularities, i.e. the points at which occur the generalized ridges or ravines, we 
use the necessary conditions as in the form

G = k1k2 ,
G1 = k1k2;1 + k1;1k2 = 0,            (22)
G2 = k1k2;2 + k1;2k2 = 0,

where 

These conditions determine the points (u1, u2)on the configuration space at which occur the generalized 
ridges or ravines.
For non planer point [k1 k2]

t0, the conditions (22) are equivalent to

k2;1k1;2 + k1;1k2;2 = 0          (23)

The second derivates are given as

G11 = 2k1;1k2;1 + k1k2;11 + k1;11k2 ,
G22 = 2k1;2k2;2 + k1k2;22 + k1;22k2 ,        (24)
G12 = k1;2k2;1 + k1k2;12 + k1;12k2 + k1;12k2;2 , 

where  

The sufficient conditions for the existence of a maxima or minima, i.e. the generalized ridges or ravines, 
are given from the well known conditions on the Hessian matrix (Gb). These conditions are given from the 
following theorems [10,11,12].
Theorem 3. The sufficient condition for the existence of a generalized ridge near elliptic point (K > 0) is one 
of the inequalities

k1, k2 > 0 , k1,ijb, k2,ijb < 0
k1, k2 < 0 , k1,ijb, k2,ijb  > 0        (25)

must be satisfied.

Theorem 4. The sufficient condition for the existence of a generalized ravine near elliptic point (K > 0) is 
one the inequalities
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k1, k2 > 0 , k1,ijb, k2,ijb > 0
k1, k2 < 0 , k1,ijb, k2,ijb  < 0        (26)

must be satisfied.

Theorem 5. The sufficient condition for the existence of a generalized elliptic near hyperbolic point (K < 0) 
is one of the inequalities

k1 < 0 , k2 > 0 , k1,ijb < 0, k2,ijb > 0
k1 >0 , k2 < 0 , k1,ijb > 0, k2,ijb  < 0       (27)

must be satisfied.

Theorem 6. The sufficient condition for the existence a of generalized ravine near hyperbolic point (K < 0)  
is one of the inequalities

k1 > 0 , k2 < 0 , k1,ijb < 0, k2,ijb > 0
k1 < 0 , k2 > 0 , k1,ijb > 0, k2,ijb < 0       (28)

must be satisfied.

4.  UMBILICAL POINTS

From (7) and (11) one can show the condition for an umbilici is

           (29)

which is equivalent to simultaneously requiring that

g11 L22  g22 L11 = 0 ,
g22 L12  g12 L22 = 0 .         (30)

If the configuration space patched by principal patch ( orthogonal lines of curvatures as the parametric curves 
) we have

g12 = L12 = 0 ,  g11 L22  g22 L11 = 0        (31)

Since the principal curvatures are not C functions at the umbilici points, we can not define the ridges or 
ravines. From (31) , (7) and (11), it is easy to see that the umbilics are given from the differential equations

           (32)

In the natural rotation (=1, t = 0) we have
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h'  (h" f '    f '' h' ) = 0         (33)

If the profile curve parameterized by the arc length (natural parameter) we have

  1+ h'2,  f= u2, f ' = 1, f '' = 0.             (34)

Thus the umbilics in this case are given from

(1+ h' 2)h'  h'' = 0          (35)

Thus the point (u1, u2) on the configuration space of the natural rotation is an umbilic point if it satisfied the 
differential equation (35). The differential equation (35) has a general solution in the form

         (36)

where c1 and c2 are arbitrary constants.

From (34) , (36) and (6) we have a configuration space corresponding to the natural rotation as in the 
following form

x(u1, u2) = (u1 cos u2, u1 sin u2, sin -1 (c1 + c2)).     (37)

The normal vector field on this surface is given as

           (38)

where  

Remark 3.  All the points on the surface (37) are of type umbilical as we see in figures 5 and 6 for special 
values of the constants c1 and c2. Also the Gass image of this surface are given through figures 7 and 8 
respectively.

Remark 4. The construction of the configuration space (37) and its Gauss image (38) depends on the 
constants  c1 and c2 as the following:
(i) c1 > 0 and c2 < -1, as in Fig. 5, 7.
(ii) c1 < 0 and -1 < c2 < 1, as in Fig. 6, 8.
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Figure 1
Configuration Space,  v2, f = u2, h = u2 - 3u+1,
t = sin v

Figure 2
Configuration Space

Figure 4
Gauss Image G2

Figure 3
Gauss Image G1
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Figure 5
Umbilical Configuration Space c1  0, -1  c2  1 Figure 6

Umbilical Configuration Space c1  0, c2  -1

Figure 7
Gauss Image G3

Figure 8
Gauss Image G4


