Halpern-type Iterations for Strong Relatively Nonexpansive Multi-valued Mappings in Banach Spaces

ZHAO Fuhai^{[a],*}; YANG Li^[a]

^[a]School of Science, South West University of Science and Technology, Mianyang, Sichuan 621002, China. *Corresponding author. Address: School of Science, South West University of Science and Technology, Mianyang, Sichuan 621002, China.

Received 14 February, 2012; accepted 5 May, 2012

Abstract

In this paper, an iterative sequence for strong relatively nonexpansive multi-valued mapping by modifying Halpern's iterations is introduced, and then some strong convergence theorems are proved. At the end of the paper some applications are given also.

Key words

Multi-valued mapping; Strong relatively nonexpansive; Fixed point; Iterative sequence; Normalized duality mapping

2000 (AMS)Mathematics Subject Classication: 47H09. 47H10. 49J25.

ZHAO Fuhai, YANG Li (2012). Halpern-type Iterations for Strong Relatively Nonexpansive Multi-valued Mappings in Banach Spaces. *Studies in Mathematical Sciences*, 4(2), 40-47. Available from: URL: http://www.cscanada.net/index.php/sms/article/view/j. sms.192384522012 0402.1994 DOI: http://dx.doi.org/10.3968/j.sms.1923845220120402.1994

1. INTRODUCTION

Throughout this paper, we denote by \mathbb{N} and \mathbb{R} the sets of positive integers and real numbers, respectively. Let *D* be a nonempty closed subset of a real Banach space *E*. A single-valued mapping $T : D \to D$ is called nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in D$. Let N(D) and CB(D) denote the family of nonempty subsets and nonempty closed bounded subsets of *D*, respectively. The Hausdorff metric on CB(D) is defined by

$$H(A_1, A_2) = \max\{\sup_{x \in A_1} d(x, A_2), \sup_{y \in A_2} d(y, A_1)\},$$
(1.1)

for $A_1, A_2 \in CB(D)$, where $d(x, A_1) = inf\{||x - y||, y \in A_1\}$. The multi-valued mapping $T : D \to CB(D)$ is called nonexpansive if $H(T(x), T(y)) \le ||x - y||$ for all $x, y \in D$. An element $p \in D$ is called a fixed point of $T : D \to N(D)$ if $p \in T(p)$. The set of fixed points of T is represented by F(T).

Let *E* be a real Banach space with dual E^* . We denote by *J* the normalized duality mapping from *E* to 2^{E^*} defined by

$$J(x) = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}, \ x \in E.$$
(1.2)

where $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing.

A Banach space *E* is said to be strictly convex if $\frac{\|x+y\|}{2} < 1$ for all $x, y \in U = \{z \in E : \|z\| = 1\}$ with $x \neq y$. *E* is said to be uniformly convex if, for each $\epsilon \in (0, 2]$, there exists $\delta > 0$ such that $\frac{\|x+y\|}{2} < 1 - \delta$ for

all $x, y \in U$ with $||x - y|| \ge \epsilon$. *E* is said to be smooth if the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} \tag{1.3}$$

exists for all $x, y \in U$. *E* is said to be uniformly smooth if the above limit exists uniformly in $x, y \in U$.

Remark 1.1 The following basic properties for Banach space E and for the normalized duality mapping J can be found in Cioranescu^[1].

(i) If E is an arbitrary Banach space, then J is monotone and bounded;

(ii) If E is a strictly convex Banach space, then J is strictly monotone;

(iii) If E is a smooth Banach space, then J is single-valued, and hemi-continuous, i.e., J is continuous from the strong topology of E to the weak star topology of E;

(iv) If E is a uniformly smooth Banach space, then J is uniformly continuous on each bounded subset of E;

(v) If *E* is a reflexive and strictly convex Banach space with a strictly convex dual E^* and $J^* : E^* \to E$ is the normalized duality mapping in E^* , then $J^{-1} = J^*$, $JJ^* = I_F^*$ and $J^*J = I_E$;

(vi) If E is a smooth, strictly convex and reflexive Banach space, then the normalized duality mapping J is single-valued, one-to-one and onto;

(vii) A Banach space E is uniformly smooth if and only if E^* is uniformly convex. If E is uniformly smooth, then it is smooth and reflexive.

Let *E* be a smooth Banach space. In the sequel, we always use $\phi : E \times E \to \mathbb{R}^+$ to denote the Lyapunov functional defined by

$$\phi(x, y) = ||x||^2 - 2\langle x, Jy \rangle + ||y||^2, \quad \forall x, y \in E.$$
(1.4)

It is obvious from the definition of ϕ that

$$(||x|| - ||y||)^2 \le \phi(x, y) \le (||x|| + ||y||)^2, \quad \forall x, y \in E.$$
(1.5)

In addition, the function ϕ has the following property:

$$\phi(y, x) = \phi(z, x) + \phi(y, z) + 2\langle z - y, Jx - Jz \rangle, \quad \forall x, y, z \in E$$

$$(1.6)$$

and

$$\phi(x, J^{-1}(\lambda Jy + (1 - \lambda)Jz) \le \lambda \phi(x, y) + (1 - \lambda)\phi(x, z),$$
(1.7)

for all $\lambda \in [0, 1]$ and $x, y, z \in E$.

Let *C* is a nonempty closed convex subset of a reflexive, strictly convex and smooth Banach space *E*. Following Alber ^[2], the generalized projection $\Pi_C : E \to C$ is defined by

$$\Pi_C(x) = \arg \inf_{y \in C} \phi(y, x), \quad \forall x \in E.$$

Let *D* be a nonempty subset of a smooth Banach space. A mapping $T : D \to E$ is relatively nonexpansive ^[3-5], if the following properties are satisfied:

(R1) $F(T) \neq \emptyset$;

(R2) $\phi(p, Tx) \leq \phi(p, x)$ for all $p \in F(T)$ and $x \in D$;

(R3) I - T is demi-closed at zero, that is, whenever a sequence $\{x_n\}$ in D converges weakly to p and $\{x_n - Tx_n\}$ converges strongly to 0, it follows that $p \in F(T)$.

If T satisfies (R1) and (R2), then T is called quasi- ϕ -nonexpansive^[6].

Recently, Weerayuth Nilsrakoo^[7] introduced the following iterative sequence for finding a fixed point of strongly relatively nonexpansive mapping $T : D \to E$. Given $x_1 \in D$,

$$x_{n+1} = \prod_D J^{-1}(\alpha_n J u + (1 - \alpha_n) J T x_n)$$

where *D* is nonempty closed convex subset of a uniformly convex and uniformly smooth Banach space *E*, Π_D is the generalized projection of *E* onto *D* and $\{\alpha_n\}$ is a sequences in (0,1).

Iterative methods for approximating fixed points of multi-valued mappings in Banach spaces have been studied by some authors, see for instance ^[8–12].

Let *D* be a nonempty closed convex subset of a smooth Banach space *E*. A mapping $T : D \to N(D)$ is relatively nonexpansive multi-valued mapping ^[12], if the following properties are satisfied:

(S1) $F(T) \neq \emptyset$;

(S2) $\phi(p, z) \le \phi(p, x), \forall x \in D, z \in T(x), p \in F(T);$

(S3) I - T is demi-closed at zero, that is, whenever a sequence $\{x_n\}$ in D which weakly to p and $\lim d(x_n, T(x_n)) = 0$, it follows that $p \in F(T)$.

Let D be a nonempty closed convex subset of a smooth Banach space E. We define a strongly relatively nonexpansive multi-valued mapping as follows.

Definition 1.2 A multi-valued mapping $T : D \to N(D)$ is called strongly relatively nonexpansive, if T satisfies (S1), (S2), (S3)and

(S4) If whenever $\{x_n\}$ is a bounded sequence in *D* such that $\phi(p, x_n) - \phi(p, z_n) \rightarrow 0$, for some $p \in F(T), z_n \in T(x_n)$, it follows that $\phi(z_n, x_n) \rightarrow 0$.

In this article, inspired by Weerayuth Nilsrakoo^[7], we introduce the following iterative sequence for finding a fixed point of strongly reatively nonexpansive multi-valued mapping $T : D \rightarrow N(D)$. Given $u \in E, x_1 \in D$,

$$x_{n+1} = \prod_D J^{-1}(\alpha_n J u + (1 - \alpha_n) J w_n)$$
(1.8)

where $w_n \in T x_n$ for all $n \in N$, *D* is a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach space *E*, Π_D is the generalized projection of *E* onto *D* and $\{\alpha_n\}$ is sequences in (0,1). We proved the strong convergence theorems in uniformly convex and uniformly smooth Banach space *E*.

2. PRELIMINARIES

In the sequel, we denote the strong convergence and weak convergence of the sequence $\{x_n\}$ by $x_n \to x$ and $x_n \to x$, respectively.

First, we recall some conclusions.

Lemma 2.1 (Cf. [13, Proposition 2]). Let *E* be a uniformly convex and smooth Banach space and let $\{x_n\}$ and $\{y_n\}$ be two sequences of *E* such that $\{x_n\}$ or $\{y_n\}$ is bounded. If $\phi(x_n, y_n) \to 0$, then $x_n - y_n \to 0$. **Remark 2.2** For any bounded sequences $\{x_n\}$ and $\{y_n\}$ in a uniformly convex and uniformly smooth Banach space *E*, we have

$$\phi(x_n, y_n) \to 0 \iff x_n - y_n \to 0 \iff Jx_n - Jy_n \to 0.$$

Lemma 2.3 (Cf. [13, Propositions 4 and 5]). Let E be a smooth, strictly convex and reflexive Banach space and C be a nonempty closed convex subset of E. Then the following conclusions hold:

(a) $\phi(x, \Pi_C y) + \phi(\Pi_C y, y) \le \phi(x, y)$ for all $x \in C$ and $y \in E$;

(b) If $x \in E$ and $z \in C$, then $z = \prod_C x \iff \langle z - y, Jx - Jz \rangle \ge 0, \forall y \in C$;

(c) For $x, y \in E$, $\phi(x, y) = 0$ if and only x = y.

Remark 2.4. The generalized projection mapping Π_C above is relatively nonexpansive and $F(\Pi_C) = C$. Let *E* be a reflexive, strictly convex and smooth Banach space. The duality mapping J^* from E^* onto

 $E^{**} = E$ coincides with the inverse of the duality mapping J from E onto E^* , that is, $J^* = J^{-1}$. We will use the following mapping $V : E \times E^* \to R$ studied in [2]:

$$V(x, x^*) = ||x||^2 - 2\langle x, x^* \rangle + ||x^*||^2$$
(2.3)

for all $x \in E$ and $x^* \in E^*$. Obviously, $V(x, x^*) = \phi(x, J^{-1}(x^*))$ for all $x \in E$ and $x^* \in E^*$. **Lemma 2.5** (Cf. [2] and [14, Lemma 3.2]). Let *E* be a reflexive, strictly convex and smooth Banach space. Then

$$V(x, x^*) + 2\langle J^{-1}(x^*) - x, y^* \rangle \le V(x, x^* + y^*)$$

for all $x \in E$ and $x^*, y^* \in E^*$.

Lemma 2.6 (Cf. [15, Lemma 2.1]). Let $\{a_n\}$ be a sequence of nonnegative real numbers. Suppose that

$$a_{n+1} \le (1 - \gamma_n)a_n + \gamma_n \delta_n$$

for all $n \in \mathbb{N}$, where the sequences $\{\gamma_n\}$ in (0,1) and $\{\delta_n\}$ in \mathbb{R} satisfy the following conditions: $\lim \gamma_n =$

0, $\sum_{n=1}^{\infty} \gamma_n = \infty$ and $\limsup_{n \to \infty} \delta_n \le 0$. Then $\lim_{n \to \infty} a_n = 0$.

Lemma 2.7 (Cf. [16, Lemma 3.1]). Let $\{a_n\}$ be a sequence of real numbers such that there exists a subsequence $\{n_i\}$ of $\{n\}$ such that $a_{n_i} < a_{n_{i+1}}$ for all $i \in \mathbb{N}$. Then there exists a nondecreasing sequence $\{m_k\} \in \mathbb{N}$ such that $m_k \to \infty$ and the following properties are satisfied by all (sufficiently large) numbers $k \in \mathbb{N}$:

$$a_{m_k} \leq a_{m_{k+1}} \text{ and } a_k \leq a_{m_{k+1}}$$

Infact, $m_k = max\{j \le k : a_j < a_{j+1}\}.$

Lemma 2.8 (Cf. [12, Proposition 2.1]). Let *E* be a strictly convex and smooth Banach space, and *D* a nonempty closed convex subset of *E*. Suppose $T : D \to N(D)$ is a relatively nonexpansive multi-valued mapping. Then, F(T) is closed and convex.

3. MAIN RESULTS

In this section, we use Halpern's idea ^[17] for finding fixed point of strongly relatively nonexpansive multivalued mappings in a uniformly convex and smooth Banach space. In the sequel, we shall need the following lemma.

Lemma 3.1 Let *D* be a nonempty closed convex subset of a uniformly convex and smooth Banach space $E, T : D \to N(D)$ be a relatively nonexpansive multi-valued mapping, $x \in E$ and $x^* = \prod_{F(T)} x$. Suppose that $\{x_n\}$ and $\{y_n\}$ are bounded sequences such that $\phi(z_n, x_n) \to 0$ and $\phi(z_n, y_n) \to 0, z_n \in T x_n$. Then

$$\limsup_{n\to\infty} \langle y_n - x^*, Jx - Jx^* \rangle \le 0.$$

Proof. From the uniform convexity of *E* and Lemma 2.1,

$$z_n - x_n \to 0$$
 and $y_n - x_n \to 0$.

From property (R3) of the mapping *T*, we choose a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \rightarrow y \in F(T)$ and

$$\limsup_{n \to \infty} \langle y_n - x^*, Jx - Jx^* \rangle = \limsup_{n \to \infty} \langle x_n - x^*, Jx - Jx^* \rangle$$
$$= \limsup_{i \to \infty} \langle x_{n_i} - x^*, Jx - Jx^* \rangle$$

From Lemma 2.3(b), we immediately obtain that

$$\limsup_{n \to \infty} \langle y_n - x^*, Jx - Jx^* \rangle = \langle y - x^*, Jx - Jx^* \rangle \le 0$$

Theorem 3.2 Let *D* be a nonempty, closed and convex subset of a uniformly convex and smooth Banach space *E* and let $T : D \to N(D)$ be a strongly relatively nonexpansive multi-valued mapping. Let $\{x_n\}$ be the iterative sequence defined by (1.8), $\{\alpha_n\}$ is sequence in (0,1) satisfying

(C1) $\lim_{n \to \infty} \alpha_n = 0;$

(C2)
$$\sum_{n=1}^{\infty} \alpha_n = \infty$$

Then $\{x_n\}$ converges strongly to $\prod_{F(T)} u$.

Proof. Let $y_n \equiv J^{-1}(\alpha_n J u + (1 - \alpha_n) J w_n)$. Then $x_{n+1} \equiv \prod_D y_n$. By Lemma 2.8, F(T) is nonempty, closed and convex, so, we can define the generalized projection $\prod_{F(T)}$ onto F(T). Putting $u^* = \prod_{F(T)} u$, we first show that $\{x_n\}$ is bounded. From Remark 2.4 and (1.7), we have

$$\begin{split} \phi(u^*, x_{n+1}) &\leq \phi(u^*, y_n) = \phi(u^*, J^{-1}(\alpha_n J u + (1 - \alpha_n) J w_n)) \\ &\leq \alpha_n \phi(u^*, u) + (1 - \alpha_n) \phi(u^*, w_n) \\ &\leq \alpha_n \phi(u^*, u) + (1 - \alpha_n) \phi(u^*, x_n) \\ &\leq max \{ \phi(u^*, u), \phi(u^*, x_n) \}. \end{split}$$

By induction, we have

 $\phi(u^*, x_{n+1}) \le max\{\phi(u^*, u), \phi(u^*, x_1)\},\$

for all $n \in \mathbb{N}$. This implies that $\{x_n\}$ is bounded and so is the sequence $\{Tx_n\}$. From Condition (C1) and (1.7), we obtain

$$\phi(w_n, y_n) = \phi(w_n, J^{-1}(\alpha_n J u + (1 - \alpha_n) J w_n))$$

$$\leq \alpha_n \phi(w_n, u) + (1 - \alpha_n) \phi(w_n, w_n)$$

$$= \alpha_n \phi(w_n, u) \to 0, \quad (n \to \infty).$$
(3.1)

From Remark 2.4, Lemma 2.5 and (1.7), we have

$$\begin{aligned} \phi(u^{*}, x_{n+1}) &\leq \phi(u^{*}, y_{n}) = v(u^{*}, Jy_{n}) \\ &\leq v(u^{*}, Jy_{n} - \alpha_{n}(Ju - Ju^{*})) - 2\langle y_{n} - u^{*}, -\alpha_{n}(Ju - Ju^{*}) \rangle \\ &= v(u^{*}, \alpha_{n}Ju^{*} + (1 - \alpha_{n})Jw_{n}) + 2\alpha_{n}\langle y_{n} - u^{*}, Ju - Ju^{*} \rangle \\ &= \phi(u^{*}, J^{-1}(\alpha_{n}Ju^{*} + (1 - \alpha_{n})Jw_{n})) + 2\alpha_{n}\langle y_{n} - u^{*}, Ju - Ju^{*} \rangle \\ &\leq \alpha_{n}\phi(u^{*}, u^{*}) + (1 - \alpha_{n})\phi(u^{*}, w_{n}) + 2\alpha_{n}\langle y_{n} - u^{*}, Ju - Ju^{*} \rangle \\ &\leq (1 - \alpha_{n})\phi(u^{*}, x_{n}) + 2\alpha_{n}\langle y_{n} - u^{*}, Ju - Ju^{*} \rangle, \end{aligned}$$
(3.2)

for all $n \in \mathbb{N}$.

The rest of the proof will be divided into two parts.

Case1. Suppose that there exists $n_0 \in N$ such that $\{\phi(u^*, x_n)\}_{n=n_0}^{\infty}$ is nonincreasing. In this situation, $\{\phi(u^*, x_n)\}$ is then convergent. Then

$$\lim_{n \to \infty} (\phi(u^*, x_n) - \phi(u^*, x_{n+1})) = 0.$$
(3.3)

Notice that

$$\phi(u^*, x_{n+1}) \le \alpha_n \phi(u^*, u) + (1 - \alpha_n) \phi(u^*, w_n).$$

It follows from (3.3) and Condition (C1) that

$$\begin{aligned} \phi(u^*, x_n) - \phi(u^*, w_n) &= \phi(u^*, x_n) - \phi(u^*, x_{n+1}) + \phi(u^*, x_{n+1}) - \phi(u^*, w_n) \\ &\le \phi(u^*, x_n) - \phi(u^*, x_{n+1}) + \alpha_n(\phi(u^*, u) - \phi(u^*, w_n)) \to 0. \end{aligned}$$

Since T is strongly relatively nonexpansive multi-valued mapping,

$$\phi(w_n, x_n) \to 0.$$

It follows from (3.1) and Lemma 3.1 that

$$\limsup_{n \to \infty} \langle y_n - u^*, Ju - Ju^* \rangle \le 0.$$
(3.4)

From (3.2), we have

$$\phi(u^*, x_{n+1}) \le (1 - \alpha_n)\phi(u^*, x_n) + 2\alpha_n \langle y_n - u^*, Ju - Ju^* \rangle.$$
(3.5)

It follows from Lemma 2.6, (3.4) and (3.5) that

$$\lim_{n\to\infty}\phi(u^*,x_n)=0.$$

Hence the conclusion follows from Lemmas 2.1.

Case2. Suppose that there exists a subsequence $\{n_i\}$ of $\{n\}$ such that

$$\phi(u^*, x_{n_i}) \le \phi(u^*, x_{n_i+1}),$$

for all $i \in \mathbb{N}$. Then, by Lemma 2.7, there exists a nondecreasing sequence $\{m_k\} \subset \mathbb{N}$ such that $m_k \to \infty$,

$$\phi(u^*, x_{m_k}) \le \phi(u^*, x_{m_k+1})$$
 and $\phi(u^*, x_k) \le \phi(u^*, x_{m_k+1})$,

for all $k \in \mathbb{N}$. This together with Condition (C1) gives

$$\phi(u^*, x_{m_k}) - \phi(u^*, w_{m_k}) = \phi(u^*, x_{m_k}) - \phi(u^*, x_{m_k+1}) + \phi(u^*, x_{m_k+1}) - \phi(u^*, w_{m_k})$$

$$\leq \alpha_{m_k}(\phi(u^*, u) - \phi(u^*, w_{m_k})) \to 0.$$

This implies that

$$\phi(w_{m_k}, x_{m_k}) \to 0.$$

It now follows from (3.1) and Lemma 3.1 that

$$\limsup_{n \to \infty} \langle y_{m_k} - u^*, Ju - Ju^* \rangle \le 0.$$
(3.6)

From (3.2), we have

$$\phi(u^*, x_{m_k+1}) \le (1 - \alpha_{m_k})\phi(u^*, x_{m_k}) + 2\alpha_{m_k} \langle y_{m_k} - u^*, Ju - Ju^* \rangle.$$
(3.7)

Since $\phi(u^*, x_{m_k}) \le \phi(u^*, x_{m_k+1})$, we have

$$\alpha_{m_k}\phi(u^*, x_{m_k}) \le \phi(u^*, x_{m_k}) - \phi(u^*, x_{m_k+1}) + 2\alpha_{m_k}\langle y_{m_k} - u^*, Ju - Ju^* \rangle \le 2\alpha_{m_k}\langle y_{m_k} - u^*, Ju - Ju^* \rangle.$$

In particular, since $\alpha_{m_k} > 0$, we get

$$\phi(u^*, x_{m_k}) \leq 2\langle y_{m_k} - u^*, Ju - Ju^* \rangle$$

It follows from (3.6) that $\phi(u^*, x_{m_k}) \rightarrow 0$. This together with (3.7) gives

$$\phi(u^*, x_{m_k+1}) \to 0.$$

But $\phi(u^*, x_k) \le \phi(u^*, x_{m_k+1})$ for all $k \in \mathbb{N}$. We conclude that $x_k \to u^*$.

This implies that $\lim x_n = u^*$ and the proof is finished.

Remark 3.3 The result [12, Theorem 3.3] and [18, Corollary 8] is a special case of our result. **Lemma 3.4** Let *D* be a nonempty, closed and convex subset of a uniformly convex and uniformly smooth Banach space *E*. Let $T : D \to N(D)$ be a relatively nonexpansive multi-valued mapping. Let *U* be the mapping defined by

$$U = J^{-1}(\lambda J + (1 - \lambda)JT),$$

where $\lambda \in (0, 1)$, then $U : D \to N(D)$ is strongly relatively nonexpansive multi-valued mapping and F(U) = F(T).

The proof is similar to the proof of [19, Lemmas 3.1 and 3.2].

Applying Theorem 3.2 and Lemma 3.4, we have the following result.

Theorem 3.5 Let *D* be a nonempty, closed and convex subset of a uniformly convex and uniformly smooth Banach space *E* and let $T : D \to N(D)$ be a relatively nonexpansive multi-valued mapping. Let $\{x_n\}$ be a sequence in *D* defined by $u \in E, x_1 \in D$ and

$$x_{n+1} = \prod_D J^{-1}(\alpha_n J u + (1 - \alpha_n)(\lambda J x_n + (1 - \lambda)J z_n))$$

where $z_n \in T x_n$ for all $n \in \mathbb{N}$, $\{\alpha_n\}$ is a sequence in (0,1) satisfying Conditions (C1) and (C2), and $\lambda \in (0, 1)$. Then $\{x_n\}$ converges strongly to $\prod_{F(T)} u$.

Remark 3.6 In Theorems 3.2 and 3.5, the condition of the nonempty interior of fixed point set of T is not needed.

4. APPLICATION TO ZERO POINT PROBLEM OF MAXIMAL MONOTONE MAPPINGS

Let *E* be a smooth, strictly convex and reflexive Banach space. An operator $A : E \to 2^{E^*}$ is said to be monotone, if $\langle x - y, x^* - y^* \rangle \ge 0$ whenever $x, y \in E$, $x^* \in Ax$, $y^* \in Ay$. We denote the zero point set $\{x \in E : 0 \in Ax\}$ of *A* by $A^{-1}0$. A monotone operator *A* is said to be maximal, if its graph $G(A) := \{(x, y) : y \in Ax\}$ is not properly contained in the graph of any other monotone operator. If *A* is maximal monotone, then $A^{-1}0$ is closed and convex. Let *A* be a maximal monotone operator, then for each r > 0 and $x \in E$, there exists a unique $x_r \in D(A)$ such that $J(x) \in J(x_r) + rA(x_r)$ (see, for example, [2]). We define the *resolvent* of *A* by $J_r x = x_r$. In other words $J_r = (J + rA)^{-1}J$, $\forall r > 0$. We know that J_r is a single-valued relatively nonexpansive mapping and $A^{-1}0 = F(J_r)$, $\forall r > 0$, where $F(J_r)$ is the set of fixed points of J_r . We have the following

Theorem 4.1 Let E, $\{\alpha_n\}$ be the same as in Theorem 3.2. Let $A : E \to 2^{E^*}$ be a maximal monotone operator and $J_r = (J + rA)^{-1}J$ for all r > 0 such that $A^{-1}0 \neq \emptyset$. Let $\{x_n\}$ be the sequence generated by $u, x_1 \in E$ and

$$x_{n+1} = J^{-1}(\alpha_n J u + (1 - \alpha_n) J J_r x_n),$$

then $\{x_n\}$ converges strongly to $\prod_{A^{-1}0} u$.

Proof. In Theorem 3.2 taking D = E, $T = J_r$, r > 0, then $T : E \to E$ is a single-valued relatively nonexpansive mapping and $A^{-1}0 = F(T) = F(J_r)$, $\forall r > 0$ is a nonempty closed convex subset of E. Therefore all the conditions in Theorem 3.2 are satisfied. The conclusion of Theorem 4.1 can be obtained from Theorem 3.2 immediately.

REFERENCES

- [1] Cioranescu, I. (1990). Geometry of Banach Spaces, Duality Mappings and nonlinear Problems. *Kluwer Academic, Dordrecht.*
- [2] Alber, Y. I. (1996). Metric and Generalized Projection Operators in Banach Spaces. *Marcel Dekker*, *178*, 15-50. New York.
- [3] Matsushita, S. and Takahashi, W. (2004). Weak and Strong Convergence Theorems for Relatively Nonexpansive Mappings in a Banach Spaces. *Fixed Point Theory Appl.*, 37-47.
- [4] Matsushita, S. and Takahashi, W. (2004). An Iterative Algorithm for Relatively Nonexpansive Mappings by Hybrid Method and Applications. In *Proceedings of the Third International Conference on Nonlinear Analysis and Convex Analysis* (pp. 305-313).
- [5] Matsushita, S. and Takahashi, W. (2005). A Strong Convergence Theorem for Relatively Nonexpansive Mappings in a Banach Spaces. J. Approx. Theory., 134, 257-266.
- [6] Nilsrakoo, W. and Saejung, S. (2008). Strong Convergence to Common fixed Points of Countable Relatively Quasi-Nonexpansive Mappings. *Fixed Point Theory Appl.*, DOI:10.1155/2008/312454.

- [7] Nilsrakoo, W. (2011). Halpern-Type Iterations for Strongly Relatively Nonexpansive Mappings in Banach Spaces. *Comput. Math. Appl.*, 62, 4656-4666.
- [8] Jung, J. S. (2007). Strong Convergence Theorems for Multivalued Nonexpansive Nonself-Mappings in Banach Spaces. *Nonlinear Anal.*, *66*, 2345-2354.
- [9] Shahzad, N. & Zegeye, H. (2008). Strong Convergence Results for Nonself Multimaps in Banach Spaces. *Proc. Am. Soc.*, 136, 539-548.
- [10] Shahzad, N. & Zegeye, H. (2009). On Mann and Ishikawa Iteration Schems for Multi-Valued Maps in Banach Spaces. *Nonlinear Anal.*, *71*, 838-844.
- [11] Song, Y. & Wang, H. (2009). Convergence of Iterative Algorithms for Multivalued Mappings in Banach Spaces. *Nonlinear Anal.*, 70, 1547-1556.
- [12] Homaeipour, S. & Razani, A. (2011). Weak and Strong Convergence Theorems for Relatively Nonexpansive Multi-Valued Mappings in Banach Spaces. *Fixed Point Theory Appl.*, 73, DOI:10.1186/1687-1812-2011-73.
- [13] Kamimura, S. & Takahashi, W. (2002). Strong Convergence of a Proximal-Type Algorithm in a Banach Space. SIAMJ. Optim. 13, 938-945.
- [14] Kohsaka, F. & Takahashi, W. (2004). Strong Convergence of an Iterative Sequence for Maximal Monotone Operators in a Banach Space. *Abstr. Appl. Anal.*, 239-249.
- [15] Xu, H. K. (2002). Another Control Condition in an Iterative Method for Nonexpansive Mappings. Bull. Aust. Math. Soc., 65, 109-113.
- [16] Maing, P. E. (2008). Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization. Set-Valued Anal., 16, 899-912.
- [17] Halpren, B. (1967). Fixed Points of Nonexpansive Maps. Bull. Amer. Math. Soc., 73, 957-961.
- [18] Saejung, S. (2010). Halperns Iteration in Banach Spaces. Nonlinear Anal., 73, 3431-3439.
- [19] Kohsaka, F. & Takahashi, W. (2007). Approximating Common fixed Points of Countable Families of Strongly Nonexpansive Mappings. *Nonlinear Stud.*, 14, 219-234.