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Abstract
This paper proposed the optimal portfolio model maximizing returns and minimizing the risk expressed
as CvaR under the assumption that the portfolio yield subject to multivariate t distribution. With fuzzy
mathematics method, we solve the multi-objectives model, and compare the model results to the case under
the assumption of normal distribution yield, based on the portfolio VAR through empirical research. It is
showed that our returns and risk are higher than M-V model.
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INTRODUCTION

Markowitz[1] used the mean-variance and quadratic programming method to solve the optimal portfolio
problem, which is considered as the cornerstone of modern financial theory. The model supposes the return
of investment has normal distribution, and the investor’s utility function is determined by mean and vari-
ance, where the variance reflects the investment risk. Undeniably, Markowitz’s portfolio theory pioneered
the quantitative measurement of financial risk and management, which is followed up by many other theo-
ries. With the deepening of financial theory and practice of financial measurement and modeling technology
development, the inadequacy of the theory gradually emerged. Firstly, it is the suppose of normal distribu-
tion return, with further research and practical testing, some researchers found that assets were heavy-tailed
and skewed distribution ,so literatures have improved the suppose. Bollerslev (1987)[2] described the for-
eign exchange return with t-distribution firstly. But they did not considered skewed distribution, so income
distribution also caused changes in portfolio risk change with the characterization. Hansen (1994)[3] pro-
posed skewed-t-distribution firstly, and considered both capital gains and fat-tail of the skewed nature of
consideration. In recently research, some studies extended the single-variable distribution to multi-variate
distribution, such as introducing Copula function. Multi-t distribution also can describe the heavy tail of
return.Bao etc supposed hedge portfolio returns subject to multi-t-distribution, whose objective function is
to minimize the VAR. They only consider the case of a sub-bit value, not take into account the limits of part
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of the loss. Rockafellar and S.Uryasev[5]proposed CVaR (Conditional Value at Risk), which is a new model
for researching credit risk.. CVaR means the conditional mean of the loss of Var, which is better to satisfy
the additive need, and showing a monotonic.

This paper supposes the portfolio return subject to multi-t-distribution, using CVAR to describe risk,
and proposes a model maximizing mean and minimizing CVAR. At last, with Fuzzy Mathematics, we
solve the multi-objectives model, and compare the model results to the case under the assumption of normal
distribution yield, based on the portfolio VAR through empirical research. It is showed that our returns and
risk are higher than M-V model.

1. RELATED CONCEPTS AND PROPERTIES

1.1 Multi-t-distribution and Related Properties [6]

SupposeX = (T1 (ν) , T2 (ν) · · ·Tn (ν))subject to n dimension withνdegree£according to Johnson, N. J. and
Kotz, S. In the literature [5], which gives the definition of multi-t-distribution ,whose p.d.f as:
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µ = (µ1, µ2 · · ·µn), Y = AX + µ, V = ν
ν−2AAT , suppose portfolio return isR = wT Y, then: E (R) = wTµ,

whereµT = (µ1, µ2 · · ·µn) is the n asset returns,wT = (w1,w2 · · ·wn) are their proportion, and
n
∑

i=1
wi = 1, 0 ≤

wi ≤ 1.

1.2 The Definition of CVAR

For each w, the loss f(w, y) is a random variable having a distribution induced by that of y. The underlying
probability distribution of y will be assumed for convenience to have density, which we denote by p(y)
as (1).

For a portfoliow, the loss is definedf (w, y) = −wT y, given a believe degreeβ (0 < β < 1), VaRβ (w) ,
CVaRβ (w) are defined as [7]:
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CVaRβ (w) = (1− β)−1
∫

f (w,y)≥VaRβ(x)
f (w, y) p (y)dy

Lemma: under the suppose of multivariate t distribution, with believe degreeβ(0 < β < 1):
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2. THE OPTIMAL INVESTMENT MODEL

For investors, the aim is to seek the maximize returns while controlling risk as minimal risk.Suppose that
the returns of portfolio follows multivariate t distribution.We propose the optimal portfolio under multi-t-
distribution:
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Model(P1)is a multi-objective problem. We will use fuzzy mathematic method to solve it, the steps are
follows:

(1) to solve objective(1)(2) to get the max and min value under constrains (3)(4).
(2) let stretching targets are equals to the difference between maximum and minimum values, transform

the model to a single objective optimization problem, using of membership functions.

3. EMPIRICAL RESEARCH

3.1 The Optimal Portfolio under Multi-t-distribution

We choose two stocks (Handan Iron & Steel and Baidu internet), date begins 2010.1.7.3 to 2011.8.29, with
1174 closed days, calculate each day yield:yi, j =

pi, j−pi, j−1

pi, j−1
, wherepi, j is previous day’s closing price and

pi, j−1is the day after. And we also can get the average yield of Handan Iron & Steel isµ1 = 0.0004181,
kurtosis is 15.775; the average yield of Baidu internet isµ2 = 0.0019742, kurtosis is 122.535, compare to
normal return’s kurtosis 3, the two stocks returns’s is larger ,that is, the return is heavy tails.

let m=1174,α = 0.01, using LINGO to solve model(P1) and(P1′):
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We getR+ = max E (R) = 0.0019742,R− = min E (R) = 0.0006898
Then to solve(P2)and(P2′)
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And get:C+ = max CVaR (w) = 0.020338 C− = min CVaR (w) = -0.0019742
At last, to solve model(P0):
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we get the optimal portfolio isw = [0.25, 0.75], and maxE (w) = 0.0016531, minCVaR (w) = 0.014971

3.2 Mean-VaR Model Under Normal Distribution Mean-VaR Model under Normal
Distribution is (P0

′

):
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we get the optimal portfolio isw = [0.35, 0.65], andmax E(R(w)) = 0.0015247, minV(w) = 0.013999
It is showed that our max return is equal to and risk is higher than M-V model. so the CVaR predicts

the potential risk of the portfolio, which help investors cautious investment.Although the empirical research
only include two stocks, but it is easy to be extended to many stocks case.
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