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Abstract
In this work, we investigate the role of several model characteristics and center point replications on the
properties ofA-, D-, G-, andIV- optimality for four –factor second-order response surface design. It was
discovered thatA-, D-, and G- efficiencies tend to reduce as the center points are replicated while the effect
on scaled average prediction variance tends to be very insignificant. Among the restricted models consid-
ered, the pure linear model (model1) turns out to be the best in terms of quality of estimation and model
prediction.
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INTRODUCTION

Experiments are performed in virtually all fields of inquiry usually to discover something about a particular
process or system. Designed experiments allow the analyst to control the factors thought to be important
in characterizing or explaining the response variable(s) of the experiment. Response surface methodology
(RSM) is an area of experimental design which consists of a group of mathematical and statistical tech-
niques used in the development of an adequate functional relationship between a response of interest,y, and
a number of associated input variables (Montgomery D. C., 2001).Usually, the form of the relationship is
unknown but can be approximated, within the experimental region, by a low degree polynomial such as the
second –order response surface model
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wherey represents the measured response,β̂s are parameter coefficients ande is anterm(independently and
normally distributed with mean zero and common varianceσ2

e) that accounts for random error and bias
(Khuri, A. I. and Cornell, J. A. 1996).

A popular response surface design that utilizes the above model is the central composite design (CCD),
first introduced by Box and Wilson (1951). Thek-factor CCD consists of
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i. a complete (or a fraction of) 2k factorial design denoted byf ,
ii. an axial portion consisting of 2k points arranged so that two points are chosen on the axis of each

control variable at a distance ofαfrom the design center,
iii. n0 center points.
Thus in a CCD,n = f + 2k + n0.(Khuri and Connell, 1996).
After data are generated from the experiment and a model is fitted, many parameters in the fitted model

are deemed insignificant. Therefore, a reduced model retaining only the significant terms is adopted for use,
but the researcher is also faced with the problem of selecting a model that gives the desired optimal design.

Design optimality criteria based on the adopted reduced model are equally if not more important than
the optimality criteria for the proposed full model (Borkowski and Valereso, 2001). Therefore, a design
should berobust over classes of reduced models; that is, the design should maintain high optimality criteria
over a wide assortment of potential models.

Many authors (e.g., Box and Draper 1959, 1963; Karson, Manson, and Hader 1969) have studied the
design-selection problem when the proposed approximating model is anunderparameterized approxima-
tion of the true response surface. In such cases, use is made of a low-order polynomial when a higher-order
polynomial is a better approximating function. With regard to this design problem, some authors (e.g., Box
and Draper (1987), Myers, Montgomery and Anderon-Cook (2009), and, Khuri and Cornell (1996)) also
have used the integrated mean squared error (IMSE = V + B), where

B =
NΩ
σ2

∫

R
[E(ŷ(x) − η(x)]2dx (2)

is the systematic (squared) bias resulting from underestimation of the true response surface with the fitted
low-order model;

V =
NΩ
σ2

∫

R
Var[(ŷ(x))]dx (3)

is the prediction variance, andΩ−1 =
∫

R
dx.

The research by Borkowski and Elsie (2001) addresses the problem in a different dimension. These
authors provide an evaluation of the robustness properties of some standard response surface designs (CCD,
SCD, NHD, and computer- generated algorithmic designs) over a collection of reduced models based on
D−,G−,A−, andIV- optimality criteria. Thesereduced models are formed by removing terms one after the
other from the proposed model.

In this article, we investigate the role of several model characteristics and center point replications on
the properties ofA-, D-, G-, andIV- optimal designs for the model (1) above. The impacts of the designs
for a pure linear model, a linear model with two-factor interactions, a linear model with squares, and a full
quadratic model,on the properties ofA-, D-, G-, andIV-optimalityfor ak = four-factor, 25-run CCD with
one center run are first investigated. Then we investigate the impacts of these same designs under various
numbers of experimental runs. Lastly, we investigate the effects onA-, D-, G-, andIV- optimality for the
k = four-factor, 25-run full quadratic CCD at various numbers of replications of the center points. These
measures are quantified by calculatingD, A, andG efficiencies and theIV criterion.

In this article, designs were generated usingDesign expert version 8.0.6 andMinitab15 packages.The
optimality criteria and efficiency values were computed usingMaple13 package.

1. MATERIALS AND METHODS

Four models consisting of three restricted and one unrestricted were studied in this work. The models are
Model 1:

yi = β0 + β1x1i + β2x2i + β3x3i + β4x4i + εi (4)
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Model 2:

yi = β0 + β1x1i + β2x2i + β3x3i + β4x4i + β12x1i x2iβ13x1i x3i + β14x1i x4i + β23x2i x3i + β24x2ix4iβ34x3i x4i + εi

(5)

Model 3:

yi = β0 + β1x1i + β2x2i + β3x3i + β4x4i + β11x2
1i + β22x2

2i + β33x2
3i + β44x2

4i + εi (6)

Model 4:

yi = β0 + β1x1i + β2x2i + β3x3i + β4x4i + β12x1ix2i + β13x1ix3i + β14x1ix4i

+ β23x2ix3i + β24x2ix4i + β34x3i x4i + β11x2
1iβ22x2

2i + β33x2
3i + β44x2

4iεi (7)

The corresponding designs are investigated for the role of center point replications and the properties
of A−,D−,G-, andIV- optimality criteria under n= 15, 20 and 25 experimental runs.Since each response
surface model generally has its own optimal design, the researcher is always faced with the problem of
selecting an efficient design at the design stage without knowing which model is the best fitting one.

2. DESIGN OPTIMALITY CRITERIA

Limited resources due to time and cost constraints are inherent to most experiments. Therefore the user
typically approaches experimentation with a desire to minimize the number of experimental trials while
still being able to estimate adequately the underlying model.

Design optimality criteria are single-number summaries for quality properties of the design such as
the precision with which the model parameters are estimated or the uncertainty associated with prediction.
These criteria address the design’s model estimation or prediction quality through the use of variance char-
acteristics. An optimal designselects design points and allocates the required number of subjects to each
levelcombination of the independent variables to attain the smallest possible value ofvar(β̂) as measured
by the optimality criterion of interest.

The four commonly-used optimality criteria areA-, D-, G-, andIV- optimality criteria.
TheD-optimality criterion minimizes the product of the squaredlengths of the axes of the ellipsoid and

is proportional to the volume of theconfidence ellipsoid. It is the determinant of the information matrix
M(ξ). That is,

D-criterion♦ minimize |M−1(ξ)|, or equivalently, maximize|M(ξ)|
TheA-optimality criterion minimizes the sum of the squared lengthsof the axes, which indirectly measures
the size of the ellipsoid. This is the sameas minimizing the trace of the inverse of the information matrix.

A-criterion goal♦minimize trace [M−1(ξ)]
AG-optimal design is a design that minimizes the maximum standardized varianceof the predicted response
over the design spaceR.

G-criterion goal♦minimize maxx∈R[N f ′(x)M−1(ξ) f (x)] and
IV-criterion goal♦ minimize average [N f ′(x)M−1(ξ) f (x)] over x ∈ R,

WhereX is the design matrix,x is any point in the design regionR, N is the design size andf (x) =
[ f1(x), . . . , fp(x)] is a vector ofp real- valued functions based on thep model terms.

A andD criteria examine the design’s estimation quality whileG andIV criteria are based on the scaled
prediction varianceV(x), which is a function of the variance for the above fitted response model (1). The
predicted value at a pointx is

ŷ(x) = f ′(x)β̂ (8)
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whereβ̂ = (X′X)−1X′y is the OLS estimator ofβ and f ′(x) is the vector corresponding to the model terms
in (1). Thescaledprediction variance at a pointx(Box and Hunter, 1957) is given by

V(x) =
N
σ2

Var(ŷ(x)) = N f ′(x)(X′X)−1 f (x) (9)

For each of the design sizes considered, theD, A, G, and IVoptimality measures were calculated over
reduced models of the second –order model in (1). These measures quantify the role of the model charac-
teristics. We have

D efficiency= 100|x
′x|1/p
N ,

A efficiency= 100 p
trace[N(X′X)−1] ,

G efficiency= 100 p
Nσ2

max
,

IV efficiency= Nσ2
ave,

where N is the design size, p is the number of model parameters,σ2
ave is the average of Nf ’(x)(X’X )−1f(x)

over the design region, andσ2
ave is the maximum of Nf’(x)(X’X )−1f(x) approximated over the set of points

from a 5k factorial designs (with factor levels 0,±1.414,±1).

3. RESULTS AND DISCUSSIONS

We first consider the role of model restriction onA-, D-, G-, andIV- optimality property of the designs.
These optimality criteria values were computed for each design and their corresponding efficiencies are
plotted as given in figure 1, (a), (b), (c), and (d) below.

From this figure, we observe that the pure linear model (model1) is the best in terms ofA−,D−,andG-
efficiencies. That is, in terms of quality of estimation and model prediction, this model is the best among
the four models considered here, while models 3 and 4 turn out to be the best in terms ofIV-efficiency.

Next we consider each of the four models under various numbers of experimental runs. The number
of runs we consider here aren = 15, 20, and 25. The optimality criteria values were calculated for each
design and their corresponding efficiencies plotted.Figure 2, (a), (b), (c), and (d) below shows plots ofA,
D, G, andIV efficiencies for each of these models against the number of experimental runs. The following
patterns are observed:

1. ForA: this efficiency increases slightly for model1 (pure linear model) as the number of experimental
runs increases (indicating less variability ofA-efficiency for this model to changes in design size). The
efficiency decreases with increasingn for model2 (linear model with interactions). Models 3 and 4 follow
almost the same pattern under this efficiency. The effect of increasingn on A-efficiency for these models is
inconsistent and depends on the value of n.

2. ForD: the D-efficiency plot for model 1 is very similar to theA-efficiency plot. For model2, this
efficiency is also close to that ofA with slight difference. That of model3 increases slightly with increasing
n while that for model4 is similar to theA plots.

3. For G: this efficiency increases dramatically for model1 asn increases, with a slight bend at n=
20. For models 2 and 4, there is a sharp increase in this efficiency as n moves from 15 to 20 and the same
decrease at n= 20. While model3 decreases sharply with increasing n from 15 to 20 and then increases at
n= 20.

4. For IV: models 1 and 2 decreases in this efficiency as n increases, though in a slightly different
manner. While model 3 seems to be stationary with increasing n, model4 increases dramatically with slight
bend as n increases.

Fromfigure 2 above, model1 is the best underA- andG- efficiencies, while models 1 and 3 are the best
underD-efficiency. These efficiencies increase for this model as the number of experimental runs increases.
UnderIV-efficiency, model4 is the best.

Lastly, we investigate the role of number of center point replications on theA-, D-, G-, and IV- op-
timality property for the four-factor (full quadratic) CCD. The criterion value of each of these optimality
properties is computed and the corresponding efficiency plotted, as given below.
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Figure 1
Plots of Model Efficiencies for Four-Factor (25 Run) CCD With One Center Point. The Models are–
Pure Linear Model (Model1), Pure Linear Model with Two-Factor Interactions (Model2), Pure Lin-
ear Model with Squares (Model3), and Full Quadratic Model (Model4).

Figure3 above shows plots ofA-, D-, G-, andIV- efficiencies for the four-factor (full quadratic) CCD
against various numbers of center point replications. We can see thatA-, D-, and G- efficiencies are reduced
as the center points are replicated with theD-efficiency being the worst. The effect of increasing center
point onIV tends to be very insignificant. Though the model we consider here is a full quadratic model,
these results agree perfectly with those of Borkowski and Valereso, 2001, for their reduced models.

CONCLUSION

From the second-order design model (CCD) we considered in this work, we have shown that optimality
criteria are sensitive to center point replications and model restrictions. Therefore when a researcher is
faced with a decision of which response surface design to choose, based on one or more optimality criteria,
it is important that these criteria be first determined over a subset of restricted models and numbers of
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Figure 2
Plots of Model Efficiencies for the Four-Factor (n = 15, 20, and 25) CCD With One Center Point. The
Models are–Pure Linear Model (Model1), Pure Linear Model with Two-Factor Interactions (Model2),
Pure Linear Model with Squares (Model3), and Full Quadratic Model (Model4).

experimental runs. These criteria are not robust to restricted models and design size.

We have observed that the pure linear model is the best in terms ofA−,D−,andG-efficiencies. That
is, in terms of quality of estimation and model prediction, this model is the best among the four models
considered here, while models 3 and 4 turn out to be the best in terms of scaled average prediction variance
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Figure 3

Plots of A-, D-, G-, and IV- Efficiencies for the Four-Factor(Full Quadratic) CCD with Various Num-
bers of Center Point Replications.

efficiency.

Also, underA−,D-, andG- efficiencies, the pure linear model increases as the number of experimental
runs increases.

We see thatA-, D-, and G- efficiencies are reduced as the center points are replicated with theD-
efficiency being the worst. The effect of increasing center point on scaled average prediction variance tends
to be very insignificant.

Therefore we observed that optimal design selects design points and allocates the required number of
subjects to each levelcombination of the independent variables to attain the smallest possible value ofvar(β̂)
as measured by the optimality criterion of interest.
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