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Abstract

In this paper we find the possible phase portraits and bifurcations for a general class of host-vector epidemic
models with non-linear incidence function generalizing the Ross model.
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INTRODUCTION

In this paper we consider a modified Ross model of vector-borne diseases with non-linear incidence func-
tion. The model is given as a a two dimensional system of ODE:

X' = gu(y)ha(X) — c1ua(X)
Y = g2(X)ha(y) — coua(y)

Here x andy represent the infective host and vector populations. The tgi(g¥h;(X) andga(x)ha(y)
correspond to the incidence functions. In the original Ross model obtained from ideas given in [8], the
functionsg; andh; are linear. The fect of diferent non-linear incidence functions for usual (without

vector) epidemic models have been studied by many authors. Models with incidence functiond?8fe
have been studied in [5, 6], and models with incidence function, wiéreare of type%aplq, have been

studied in [3, 7, 9]. Results for some general type of non-linear incidence functions are obtained in [1, 2, 4].

1)

1. MAIN THEOREM

Equations in (1) are considered for0x,y < 1 because andy are supposed to correspond to the relative
infectious population of host and vector. We assume that the funagjonsandy; satisfy the following
conditions.
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Condition 1. g;, hy, 4 are continuously dierentiable in (01] and continuous in [AL]. Moreoverh/(2) < 0
andgi(2),u{(2) > 0 fori = 1,2. The functions satisfy the boundary conditiané®) = 0, ;(0) = 0 and
h;(1) = 0 and parameteis are positive foi = 1, 2.

Letgi(2) = % and 6i(2) = Z;‘/((ZZ)) where fi(2) = % ad0<z< 1.
Condition 2. ¢; is increasing ané; is non-increasing and limg, ¢i(2) = by and lim_, 6i(2) = &, where
g andb; are positive.

Conditions 1 and 2 are satisfied for many known epidemical models and incidence functions, for exam-
ple, if 6i(2) = 225 and hi(2) = (1 - 2° andy; are linear.

We now formulate our main theorem.
Theorem. Suppose system (1) satisfies Conditions 1 and 2, then we have the following structurally stable
phase portraits.
Case 1. If aja, > bih, then there is a numbey,(c;) depending ore; such that forc, > cy(cp) the origin
is a global attractor and fan < cn(cy) there are two equilibria, a saddRs and a stable onBg except the
origin. The stable set d?s divides the phase space into two parts, one in the basin of attraction of the origin
and the other in the basin of attractionff
Case 2. If a;a, = bib, then there are two possibilities. The first one is that thereidepending o, such
that whenc, < c there is an equilibriunie (except the origin) attracting all trajectories except the origin
and wherc; > cthe origin is a global attractor. The second possibility is that forariliere is exactly one
equilibriumPe (except the origin) attracting all trajectories except the origin.
Case 3. If ayay < bpb, then there is always exactly one equilibrid®a (except the origin) attracting all
trajectories except the origin.

In order to prove our main theorem we need the following lemmas. To formulate the lemmas we
introduce notations convenient for using in our proof.
Notation. We consider positive-valued continuouslyfdientiable functiong defined in an interval (@],
whereB > 0.

We denote byQ(a, =), the set of functiong such that whez — 0, then% — A where eithe’A e R,
or equaleo and% — 0O for a < a, wherea is a real number.
Similarly we denote byQ(a, 0), the set of functiong such that wherz — 0, then @ — A, where

eitherA e R, orequals 0 an@%’ — oo for @ > a, whereais a real number.
For theseQ-classes the following is known to hold:
Lemma 1. If gis differentiable invertible with inversg! anda > 0 then

ge Qax) & gleQ@?o).

Lemma2. If g € Q(a, ), h e Q(b,0) anda < 0 < btheng o h € Q(ab, ).

If g€ Q(a,0),h e Q(b,0) anda, b > 0 theng o h € Q(ab, 0).
Lemma3. If g € Q(a, 0) andh € Q(b, ) then? € Q(a- b, 0).
Lemmad4. If g € Q(a, o) andh € Q(b, o) thengh € Q(a + b, o).

The proofs of these lemmas are obtained by straightforward calculations. More details and also details
of other parts of this preprint are available from authors.

We now state another lemma connecting @elasses and th@function defined by(2) = Zg(g) We
introduce a known lemma and give a short proof of it.
Lemma5. If 6 is non-increasing ané(z) — aasz — 0, theng € Q(a, «).
Proof of Lemma 5. We denote by the function defined bw(z) = g;f) ard by 7 the function defined by
n(2) = 3. Thenn(2) = 6(2) - a.

If & < athenn(2) > bfor some positivéd in a neighbourhood of zero. Integrating the inequabl!]ity> g
from uto ug = u(z) to left and fromzto z; to right and using monotonicity of logarithm we obtain

- (3)
— > —— R
u 4
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implyingu(z) — 0 forz — 0,.

We now assume = a. Sincey is non-increasing angl— 0 forz — 0,, the derivativar is non-positive
and the limit set ofiwhenz — 0, cannot contain more than one point and this cannot be zero.

We are now ready to prove our main theorem. The proof of the main theorem consists of three parts.
First part examines the number of equilibria from intersections of zero-isoclines. This part needs the lem-
mas. The second part examines the type of the equilibria found. The final part makes the global analysis
using sign analysis of the right hand sides of system 1.

Proof of main theorem. We start by finding the number of equilibria and their position in relation to each
other.

First we see that, can be considered as a function of theoordinate at equilibrium and analyze the
behaviour at endpoints 0 amxd of the interval of definition. Secondly weftirentiate that function to find
out the behaviour inside the interval ¢Q).

Letc; be fixed and suppose,(y) is a point on the isocling = 0. Then from Condition 1 it follows that
y=pi(X) = gzl(ﬁ is an increasing function ok andp;(0) = 0 andpy(X) — « for x — 1_. Thus, there
is anx; between 0 and 1 such thpi(x;) = 1 and the isocline’ = 0 is given by the functiom; defined in
[0, x4].

In this part of the proof calculating the limit behaviour wher> 0, we consider functiong; as defined
only forz> 0.

From Condition 2 and Lemma 5 it follows thgt € Q(a, ) and fi € Q(-h;, ). From Lemma 3
it follows thatfi1 € Q(by, 0) and from Lemma 1 it follows thaag;1 € Q(a—ll,O). However from Lemma 2
(second part) it follows thab, € Q(%, 0).

We now supposex(y) is also on the isocling’ = 0, that is & y) is an equilibrium point. We then
calculatec, as a function ofx i.e. ¢, = g2(X)f2(p1(X)). From Lemma 2 it follows that the composition

of f, and p; belongs toQ(- 22 o) and finally Lemma 4 implies, that, as a function of, belongs to

a

Q(az - b;_tjlv 00)

We conclude that fox — 0, we getcy(X) — 0 in case 1 whereya, > bib, andcy(X) — oo in case 3
wherea;a; < bib, and eithercy(X) — o0 orc(X) — ¢ € R, in case 2 wherega, = bib,.

Becausé,(1) = 0, we conclude that in all caseg(x) — 0 for x — x.

We have now finished examining the behavioucoét the endpoints.

To find out wherc,(X) is growing or decreasing we calculate the derivative.

Differentiatingc; = ga(y) f1(X) with respect tax and solving fory’ we get

v - -g1(y) f;(¥)
gy fa(x)

Differentiatingc, = g2(X) f2(y) with respect tax and substituting our expression fgrwe get

dc [1- i)

2 = gy faly)

x %)

62(X)01(y)
From the boundary behaviour of and the derivative, we make conclusions about the behavianr of
between 0 and; and from there we find the number of equilibria dependingori-rom condition 1 and
2 it follows that% is aways decreasing.
We consider case 1 whena, > b;b,. From conditions 1 and 2 it follows thé’é% is positive near O
and becomes negative near Then there is amm(c;) such that% = 0 for X = Xm(Cy1) and% > 0 for
X < Xm(C1) and% < 0 for X > Xm(Cy).
We denote bym,(c1), the maximum value aof;, for fixed c;.
In the case when, > cy(c1), we cannot solve fox and thus have no equilibrium apart from the origin.
If c; = cp(c1), we have only one solution fori.e. X = xy(c1) and thus one equilibrium (in addition to
the origin).
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As c(X) — 0 for x — x; andx — 0, for the cases, < cy(c1) we obtain two solutions fox, one with
X < Xm(€1) and the other withx > xm(c1) and thus have two equilibria (in addition to the origin).

Let us denote the equilibrium at the origin By. If ¢, < cy(c1), we denote the equilibrium when
X > Xm(C1) by Pe and the equilibrium wher < Xn(c1) by Ps.

The equilibriumPsg tends toP, (disease-free) anB, gets it's maximal size as, tends to zero. At
C2 = Cp(cy) there is a saddle-node bifurcation with both equilibria coinciding and disappearing after that.

Next we consider case 3, whag, < bibs. There% < 0 for all xandc; is decreasing from infinity to
zero wherx s increasing from zero tg;. Thus, there is always exactly one non-trivial equilibrium denoted
by Pe. The equilibriumP, tends to zero wheg, grows to infinity.

Finally we consider case 2, wheaga, = bib,. In this case‘% < 0 and if cp(X) — oo for x — 0,, we
have a situation analogous to the one in case 8;(K) — c thenc; is decreasing frona to zero wherx
is increasing from zero tg;. Thus forc, < c there is always exactly one non-trivial equilibrium denoted
by Pe. The equilibriumPe tends to zero when, — c_. In this case there is no non-trivial (endemic)
equilibrium forc, > ¢. At ¢, = cthere is a transcritical bifurcation.

The first part of the proof is now complete and we begin with the second part to find the type of the
equilibria.

The Jacobian matrix for system (1) is given by

3= [ g1(y)h}(X) — capy(X) g1 (Y)hx(x) ] .
95(x)ha(y) 920)h5(Y) — Ca115(Y)
Using thathi(2) = fi(2w;(2) and at equilibriunc; = gi(y) f1(X) andc; = go(x) f2(y) after some calcula-
tions the Jacobian matrix becomes

_ [ 9r(Y) 1 (Qua(¥) gy (y) fr(X)u1(X)

95(¥) fa(Y)r2(y)  92(X) F1(Y)u2(y)

for x,y # 0. We now calculate the trace and determinant of the Jacobian matrix.
From Condition 1, it follows that/(2) < 0 and

Trace(J) = gu(y) f; (ua(X) + G2() F2(Y)u2(y) < O.

Calculations show that the determinant D of the Jacobian matrix is equal to

D = —1(Qu2(y) 9 (¥) fl(x)%'

We consider case 1.

We have two equilibria in the cagg < ¢cm(cy). Whenx > xm(Cy1) then% < 0. ThisimpliesD > 0. We
note thatg/(2) > 0 from Condition 1. Thus the determinant s positiv®atWhenx < Xm(c1) then% > 0.
This impliesD < 0. Thus the determinant is negativerat

Since the trace is negative and the determinant is positig, dtis a sink. Also, since the determinant
is negative aP, it is a saddle.

In cases 2 and 3 we conclude in the same wayRQét always stable when it exists.

The type of equilibriumPy cannot always be found from Jacobian matrix, as the derivatives of the
functions might not exist at 0. Anyhow a lot is known about origin from global analysis below.

The second part of proof is now complete and we begin with the last part and examine the global
behaviour. We do this by using sign analysis<oandy’.

We start with case 1, which has the most complicated behaviour.

We notice that in thexy-space above the isocliné = 0, the sign ofX’ is positive and below negative.To
the left of the isocling’ = 0, the sign ofy’ is negative and to the right it is positive.

We consider the situation when > cy(c;). Here the isoclines do not intersect in teplane. The
isoclinex’ = 0 is above and to the left from the isoclige= 0. The isoclines divide the phase space into
three parts as seen in Figure 1. These parts are defined as follows:
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Figurel
Sign Analysisfor System z’ = y2?(1 — =) — 0.25z,y’ = z2(1 — y) — 0.3y
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Figure?2
Phase Portrait and Zero-Isoclinesfor System =’ = y?(1 — z) — 0.25z,y’ = #2(1 — y) — 0.3y

1. The region wherg’ <0< X.

2. The region wher&',y’ < 0.

3. The region wher& <0< y'.

In region 1 thex-coordinate of the trajectory is increasing and yheoordinate is decreasing. Thus the
trajectory cannot remain in the region, but has to hit the isoalire0 entering region 2 after some time . In
region 3 thex-coordinate of the trajectory is decreasing andydw@ordinate is increasing. In that way the
trajectory cannot remain in the region, but has to hit the isoglire0 entering region 2 after some time. In
region 2, thex- andy-coordinates are decreasing and the trajectory cannot escape from region 2 against the
direction field on the boundarie$ = 0 andy’ = 0 and also orx = 1 andy = 1. In region 2, trajectories can
be attracted only to the origin. We conclude that in the first and the third region the trajectories hit either
the isoclinex’ = 0 ory’ = 0 and afterwards they remain in region 2 where they are all attractegl fthus
the disease-free origin is a global attractor. One example of such a phase portrait is given in Figure 2.

We now consider the situatian < cy(c1). Here the isoclines intersect and divide the phase space into
five parts as shown in Figure 3. These regions are defined as follows:

1. The region wherg’ <0< X.

2. The region wher&',y’ < 0 andx is less than the&-coordinate oP.

3. The region wher&',y’ < 0 andx is greater than thg-coordinate ofPe.

10
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Figure3
Sign Analysisfor System =’ = y2?(1 — ) — 0.25z,y’ = z2(1 — y) — 0.15y
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Figure4
Phase Portrait and Zero-Isoclinesfor System z’ = y2(1 — ) — 0.1z, 9y’ = z2(1 — y) — 0.4y

4. The region wher&’,y’ > 0.

5. The region wher& <0<y’

In region 1, thex-coordinate of the trajectory is increasing and yheoordinate is decreasing. This
means the trajectory cannot remain in the region, but has to hit either the isgclin@ory = 0 entering
one of regions 2, 3 or 4 after some time, or the trajectory is attracteddoP,. In region 5, thex-coordinate
of the trajectory is decreasing and treoordinate is increasing. This means the trajectory cannot remain
in the region, but has to hit either the isoclire= 0 ory = 0 entering one of regions 2, 3 or 4 after
some time, or the trajectory is attractedRgor Pe. In region 2, thex- andy-coordinates are decreasing
and the trajectory cannot escape from region 2 against the direction field on the bourdari€@sand
y = 0. In region 2, trajectories can be attracted only to the origin. In region 4¢-thady-coordinates
are increasing and the trajectory cannot escape from region 4 against the direction field on the boundaries
X' = 0andy = 0. In region 4, trajectories can be attracted onl{?toln region 3, thex- andy-coordinates
are decreasing and the trajectory cannot escape from region 3 against the direction field on the boundaries
X =0andy = 0andalso ox = 1 andy = 1. In region 3, trajectories can be attracted onl{?$o

We conclude that in the first and the fifth region trajectories after some time either hit the is6¢tife
ory = 0 or tend directly to some equilibrium without visiting other parts. If they go through one of the
isoclines they come into one of regions 2, 3 or 4 and remain in the region they enter. Trajectories in region

11



Bismark Akoto; Emmanuel Kwame Essel; Gunnar Soderh&tkdies in Mathematical Sciences Vol.4
No.1, 2012

2 are attracted t®y and in regions 3 and 4 tB.. Thus the stable set of the saddledivides the phase
space into two parts, one where trajectories are attracted to origin and another where they are attracted to
Pe. One example of such a phase portrait is given in Figure 4.

1 x"=0

0.87

0.6+

0.4F

0.2]

0.8 1

Figure5
Sign Analysisfor System z’ = y2?(1 — ) — 0.25z,y’ = z2(1 — y) — 0.25y

In the casec, = cm(cy) there is a saddle-node bifuraction dividing the parameter space into two parts
with different qualitative behaviour described in the two sitautions above. In this case, the isoclines intersect,
except at origin at a tangency point which is an equilibrium. The phase space is divided into four parts as
shown in Figure 5. The regions are defined as follows:

1. The region wherg’ <0< X.

2. The region wher&',y’ < 0 andx is less than th&-coordinate of the equilibrium.

3. The region wher&',y’ < 0 andx is greater than the-coordinate of the equilibrium.

4. The region where <0<y’

In region 1, thex-coordinate of the trajectory is increasing and yheoordinate is decreasing. Thus the
trajectory cannot remain in the region, but has to hit either the isoglise0 entering one of region 2 or
3 after some time or the trajectory is attracted to the equilibrium point at tangency of isoclines. In region 4
the x-coordinate of the trajectory is decreasing andytteordinate is increasing. In that way the trajectory
cannot remain in the region but has to hit after some time either the isgtkn® entering one of region 2
or 3 or the trajectory is attracted to the equilibrium point. Trajectories in region 2 cannot escape against the
direction field on the boundary and they are all attracted by the origin. For the same reason, the trajectories
in region 3 cannot escape and they must be attracted by the equilibrium at tangency.

We conclude that trajectories in regions 1 and 4 either hit one of the isoglire8 ory’ = 0 after some
time or are attracted to the equilibrium at tangency. The equilibrium is a saddle-node and the boundary of
it's stable set divides the phase space into two parts, to the left, the trajectories are in the basin of attraction
of the origin and to the right, we have the stable set of the equilibrium including the boundary of itself.
Figure 6 shows one example of such a phase portrait.

In case 2, wheraya, = bib, and in the situatior, > c the sign analysis can be carried out in the same
way as in case 1 whem > cp(c1) and we get origin as global attractor.

In case 2 and in the situation when< ¢ we have the typical situation in the endemic case in the Ross
model. The zero-isoclines divide the phase space into four regions as shown in Figure 7. The regions are
defined as:

1. The region wherg’ <0< X'.

2. The region wher&',y’ > 0 (herex is less than the-coordinate of the endemic equilibrium).

3. The region wher&',y’ < 0 (herex is greater than the-coordinate of the endemic equilibrium).

4. The region where <0<y.

12
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Figure6
Phase Portrait and Zero-Isoclinesfor System =’ = y?(1 — =) — 0.25zx,y’ = x%(1 — y) — 0.25y
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Figure7
Sign Analysisfor System '’ = y(1 — ) — 0.5z, y’ = (1 — y) — 0.5y

As before we conclude that the trajectories in regions 1 and 4 hit one of the isoclines after some time
or are attracted directly by the endemic equilibrium. After hitting one isocline they either enter region 2 or
3 where they are attracted to the endemic equilibrium. Thus the endemic equilibrium is a global attractor,
attracting everything except the origin. One example of such a phase portrait is given in Figure 8.

In case 3, whereya, < bib, similar sign analysis as in the previous case showsPRhas$ a global
attractor attracting everything except the origin.

2. SOME EXAMPLES

We now study special cases of the functignsh; andy; in system (1). These are often used in models
with non-linear incidence. We assume the functions have the dg@n= 2, hi(2) = (1 - 2° andu;(2) = z,
i = 1,2, which gives system

X =y31-xP-cix

y =X(1-y)° - cay. 3)

13
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Figure8
Phase Portrait and Zero-Isoclinesfor System ' = y(1 — ) — 0.5z, y’ = (1 — y) — 0.5y

We supposa > 1 which here will imply case 1, a saddle-node bifurcation and two possible main types
of phase portraits.

It is possible to prove that this system satisfies Conditions 1-2 by direct calculations.

Calculations gived;(2) = aandgi(2) = 11%"; whered = b-1 anda; = a, = aandb; = b, = 1. Thus,
we can apply case 1 in our theorem.

The saddle-node bifurcation occurs whﬁﬁ = 0in (2) thereby giving us

B1(X)p2(y) = 62(X)01(y) 4)

Equation (4) must be satisfied for an equilibrium poitf in order to get a saddle-node bifurcation.
Equation (4) for bifurcation in our example (3) becomes

l1+dxl+dy

and solving fory we get:

_ —(d+a})x-1+a? ©)
C(2-a)x+d+a?’
For any equilibrium in system (3) we must have

_ ya(l; X)b’ = Xa(ly_ y)b. )

Substituting (6) into (7) we obtain a parameter representation for the saddle-node bifurcation curve in
the cicp-space ifa andb are known. Some examples of such bifurcation curves are shown in Figures 9
and 10.

In some special cases, it is possible to get algebraic formulas for calcutatnglc, or the equilibrium
(x,y) at bifurcation.

In the case wherk = 1, itis possible to calculatg, ¢, and the equilibrium at bifurcation if the product
CCz is given.

In this case bifurcation equation (5) becomes

C1

a-01-y) = 3 ®)

Multiplying equalities (7) we get

14
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Figure9
Bifurcation Curvesfor a = 1.5,3,4,6 and b = 1 of System 3.

1

0 0.2 0.4 0.6 0.8 1
¢

Figure 10
Bifurcation Curvesfor b = 0.25,0.5,1,1.5,2,3and a = 2 of System 3.

cic2 = () H(1-X)(1-y) 9)

and using (8), we obtain an expression fgr

Xy = (azclcz)E . (10)
Using expression (10) in expansion of (8) gives

X+y=1- % + (azclcg)"‘Tl . (11)

Solving fory from (8) and substituting into (11), we obtain a second order equationifoa andcic;
are known. Knowing we can solvey from (8) and finally we can calculatg andc, from equalities (7).

Finally we consider a special case whare 2 andb = 1. Here it is possible to get an expressiondor
or ¢, at bifurcation, if we know one of them. Also the bifurcation poirty) can be easily calculated from
explicit algebraic expressions afterwards.

In this case equality (10) takes on a simple form

Xy = 4¢1Cp, (12)

15
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and (11) takes on the form

4Ax + 4y = 3 + 16¢;Co. (13)
Subsitutinga = 2 andb = 1 into the expression forin (6) we get

3-4x
Y=aa-x (14)
From (7) using (14) we see that
C1X 3-4x
22— 1-x= 15
v X Zy (19)
which simplifies to
3y — 4xy = 4cy . (16)
Pluging (12) in (16) we obtain
—4ci X + 3y = 16¢1C;. a7
Solving forx andy from (13) and (17) we obtain expressions
_ 9 - 16¢c,C; _ (16Ci + 1601)02 + 3¢ (]_8)
T Te+120 VT 4, +3

Substituting now expressions (18) feandy into (12) we see after simplifications that the bifurcation
curve in thecyc-space satisfies the condition

256(C5C5 + C1C5 + C2¢p) + 288c1Cp = 27. (19)

From this we can easily solve fog or ¢, from a second order equation, if one of them is known. And
knowingc; andc;,, we can calculate the coordinates for the equilibrium at bifurcation from formulas (18).

CONCLUSION

We have examined a generalized Ross model for a large class of non-linear incidence functions and found
possible phase portraits and bifurcations. Many known incidence functions are inside this class. There are
three types of structurally stable types of phase portraits. One type has the disease-free origin as a global
attractor. A second one has the endemic equilibrium as a global attractor. In the third type both disease-free
origin and endemic equilibrium are attractors and there is a saddle equilibrium with stable set forming the
boundary between the basins of attractions of the both attractors. The possible bifurcations are the usual
saddle-node and transcritical bifurcations.
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