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Image Encryption Using Novel Mappings over GF(2n)
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Abstract: Galois Field GF(2n) is valuable to encryption and has been used in some famous
encryption algorithms, such as BCH and AES. In practical application, image encryptions are
used widely to protect information in transmission. This paper will propose two image encryption
techniques based on two novel mappings over GF(2n): One involves a transformation consisting
of a linear transformation and a Frobenius automorphism, which shuffles pixels’ positions, that
is, a permutation, giving a good diffusion effect, and another one alters pixels’ values and gives
dramatic confusion effect.
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1. INTRODUCTION

Galois Field is an appreciated tool for encryption and some famous encryption algorithms, such as BCH and
AES, have made use of its virtue. In the field of image encryption, there are so many techniques proposed,
such as Wavelet transformation, Fourier transformation, Logistic mapping and Arnold cat mapping. The
latter two are regarded as chaotic systems. In Ref. [1], Nien et al. proposed a shuffle method that combined
four chaotic systems. In Ref. [2], over Galois Field, Wang and Su introduced an encryption scheme for
secret image sharing based on (r, n)-threshold scheme inspired by Shamir[3]. And they claimed that their
scheme could provide adequately huge key-space and hence high security against brute-force attack holds.
Nevertheless, there is little work on GF(2n). In this paper, we specially focus on GF(2n) and introduce two
mappings mathematically and based on these mappings two techniques for image encryption are proposed.
The first mapping is a transformation, involving a linear transformation and Frobenius automorphism, and
another one invokes Kronecker product that help form a basis of F22n

q . The former one obtains great confu-
sion on visual sensation while the latter one modifies image’s distributive characteristics by making use of
inner product over F22n

q .

2. NOVEL MAPPINGS OVER GF(2n) AND NEW ENCRYPTION
SCHEMES
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2.1 Novel Mappings over GF(2n)

Galois field, denoted as GF(pn), is a finite extension of degree n over a finite filed Zp, where p is a prime
number, and GF(pn) ≃ Zp[x]/( f (x)), where f (x) is an irreducible polynomial of degree n in Zp[x]. Now
we are only interesting in GF(2n). By virtue of its characteristic 2, every element in GF(2n), say g(x), is
a polynomial with degree strictly less than n with coefficients either 1 or 0, hence it is conventional to
represent elements of GF(2n) as binary numbers of order n, and every g(x) ∈ GF(2n) can be denoted as g(2)
an integer in Z2n and vice versa. Addition on GF(2n) is performed as normal polynomials addition with
reduction modulo 2, and multiplication on GF(2n) is a normal polynomials multiplication with reduction
modulo an irreducible polynomial f (x) as mentioned above. In this paper, let (x, y) be pixel coordinate
and z be the gray-level value. For convenience, let coordinate index begin from 0 and let ⊙ and ⊕ denote
multiplication and addition on Galois Field GF(2n) respectively as well as a ⊙ b be ab, unless otherwise
stated. Further let Fm

q denote m-dimensional vector space over GF(q), where q = 2n, and vT is the transpose
of v.

Frobenius automorphism σ on GF(2n) is defined by σ(x) = x2, x ∈ GF(2n), which generates a finite
multiplicative cyclic group ⟨σ⟩with order n, and every elementσk ∈ ⟨σ⟩ is an automorphism on GF(2n) with
its inverse σ−k(x) = σn−k(x) = x2n−k

. In respect that GF(2n) is a field, linear space and linear transformation
are well defined in Refs. [4–6]. By employing linear algebra and Frobenius automorphism, we let ϕ be the
mapping from F2

q to itself, defined by

ϕ (x, y) =
(
x2k1

, y2k2
)
⊙

(
1 1
a b

)
⊕ (c, d)

=
(
x2k1 ⊕ ay2k2 ⊕ c, x2k1 ⊕ by2k2 ⊕ d

)
, (1)

and accordingly the inverse is as

ϕ−1 (x, y) =

 ((a⊕b)−1(bx⊕ay⊕ad⊕bc))2−k1

((a⊕b)−1(x⊕y⊕c⊕d))2−k2

T

=

 (
(a⊕b)2n−2(bx⊕ay⊕ad⊕bc)

)2n−k1

((a⊕b)2n−2(x⊕y⊕c⊕d))2n−k2


T

, (2)

where a , b, a, b, c, d ∈ GF(2n), 0 6 k1, k2 < n.

For convenience, we let aaa = (a, b, c, d, k1, k2).

Let vvv(x) =
(
1, x, x2, . . . , x2n−1

)T
be a 2n-dimensional vector over GF(2n), then {vvv(0),vvv(1),vvv(2), . . . ,vvv(2n

−1)} is a polynomial basis of F2n

q
[4, 6]. Note that the Kronecker Product of two F2n

q is F22n

q
[7]. By applying

Kronecker Product to F2n

q , a basis of F22n

q , say {vvv(x, y)|x, y ∈ GF(2n)}, as follows :

vvv(x, y) =
(
1, x, x2, . . . , x2n−1,

y, yx, yx2, . . . , yx2n−1,

. . . ,

y2n−2, y2n−2x, y2n−2x2, . . . , y2n−2x2n−1,

y2n−1, y2n−1x, y2n−1x2, . . . , (yx)2n−1)T
. (3)

We intend to obtain a basis of m-dimensional vector subspace of F22n

q , one way is to let ppp = (p1, p2, . . . ,
pm−1) be an (m − 1)-dimensional vector, m 6 2n, and define an m-dimensional vector

ωωω(x, y) = (xp1 yp2
1⊕1, xp2 yp2

2⊕2, . . . , xpm−1 yp2
m−1⊕(m−1), 1). (4)
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It is easy to prove that {ωωω(x, y)|x, y ∈ GF(2n)} spans Fm
q . Firstly, ωωω(x, y) is non-zero. Secondly, if for all

i , j and pi , p j, then xpi yp2
i ⊕i , xp j yp2

j⊕ j, else if there exists an i and a j such that i , j but pi = p j, then
p2

i ⊕ i , p2
j ⊕ j, consequently, xpi yp2

i ⊕i , xp j yp2
j⊕ j holds.

Next apply the map ϕ toωωω(x, y), and we obtain that

ννν(x, y) =ωωω
(
ϕ(x, y)T

)
=

(
f (x, y)p1 g(x, y)p2

1⊕1, f (x, y)p2 g(x, y)p2
2⊕2,

. . . , f (x, y)pm−1 g(x, y)p2
m−1⊕(m−1), 1

)
, (5)

where f (x, y) = x2k1 ⊕ ay2k2 ⊕ c, g(x, y) = x2k1 ⊕ by2k2 ⊕ d, and a , b, a, b, c, d ∈ GF(2n), 0 6 k1, k2 < n.

Obviously, {ννν(x, y)|x, y ∈ GF(2n)} does span Fm
q as well. Further more, let uuu = (u1, u2, . . . , um)T be a

m-dimensional vector, we define a map ψ: F3
q 7→ GF(2n) as follows:

ψ(x, y, z) = z ⊕ ννν(x, y) ⊙ uuu

= z ⊕ um ⊕
m−1∑
i=1

ui ⊙ f (x, y)pi g(x, y)p2
i ⊕i, (6)

where x, y, z ∈ GF(2n).

Further, define a new matrix Ψ = (ψi, j), with respect to (aaa, ppp,uuu), denoted by Ψ(aaa,ppp,uuu) as follows:

ψi, j = ψ(i, j, 0).

Clearly, ψ(x, y, ψ(x, y, z)) = z as Ψ ⊕ Ψ = O.

2.2 New Encryption Schemes Based on Mappings Above

2.2.1 Diffusion on Coordinates (DC)

Remark that the map ϕ is a bijection from F2
q to itself, hence a permutation upon pixel coordinates, assume

that pixel coordinates are limited within F2
q. Suppose that the image to process is of size M ×N, there exists

an integer n such that 2n 6 min(M,N) < 2n+1. By applying some mechanism, the image can be split into
blocks of size 2n×2n ordinally. For this reason, we assume the image to encrypt is of size 2n×2n. we choose
a key aaa and apply ϕ to its pixel coordinates. And accordingly, the decryption is similar to encryption, but to
call ϕ−1 instead of ϕ. For security, we could repeat this procesure with a new key, if desired.

2.2.2 Confusion on Pixels (CP)

Now, recall the mapping ψ defined above and we propose another scheme. Assume that the image is of size
M × N and an 8-bit image, in case of RGB image, we could regard it as a 3-level gray image, that is 3-level
8-bit image. Be aware of that M or N may be greater than 28 = 256, so we have to modify the map ψ as
follows:

ψ(x, y, z) =z ⊕ ννν(x̄, ȳ) ⊙ uuu

=z ⊕ um ⊕
m−1∑
i=1

ui ⊙ f (x̄, ȳ)pi g(x̄, ȳ)p2
i ⊕i, (7)
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where w̄ = w mod 256 is a surjective ring homomorphism from Z to Z256, z ∈ Z256.

The encryption procedure is the same as the decryption as follows:

1. For each level, choose a key tuple (aaa, ppp,uuu):

aaa = (a, b, c, d, k1, k2), ppp = (p1, p2, . . . , pm−1), uuu = (u1, u2, . . . , um)T . (8)

2. For all pixels, with key above, apply ψ to them.

3. EXNERIMENTS AND ANALYSIS

3.1 Experiments

Experiments have been carried out on GNU Octave (http://www.gnu.org/software/octave/) and
also been implemented in C with opencv (http://sourceforge.net/projects/opencvlibrary/).
Thanks James S. Plank for his Fast Galois Field Arithmetic Library (http://www.cs.utk.edu/~plank/
plank/papers/cs-07-593/).

Figure 1(a) is the original color image Lena of size 256 × 256, Figures 1(b), 1(c) and 1(d) are the RGB
spectra of Figure 1(a). We make experiments on this image with our new schemes.

3.1.1 Experiments for Diffusion on Coordinates

Figure 2 shows the results of the scheme Diffusion on Coordinates. We pick up keys aaar=(35, 42, 45, 222, 3, 5),
aaag=(5, 42, 32, 29, 6, 2), aaab=(252, 4, 45, 76, 4, 7), and aaar′=(35, 42, 45, 222, 3, 5). By applying this scheme to-
gether with these keys to Figure 1(a)’s RGB levels respectively, we obtain Figures 2(a) and 2(b) for once
and twice respectively.

Figures 2(c) and 2(d) show the results when Figure 1(a) is applied with the key aaar to all levels, once and
twice respectively. This makes clearly that this scheme is key sensitive.

(a) Original Lena. (b) R-level spectrum
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(c) G-level spectrum (d) B-level spectrum

Figure 1: Original Lena and its RGB spectra

(a) Once with the key aaar ,aaag,aaab (b) Twice with the key aaar ,aaag,aaab

(c) Once with the key aaar (d) Twice with the key aaar

(e) Once with the key aaar′ (f) Twice with the key aaar′
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(g) Once with the key aaag (h) Once with the key aaab

Figure 2: Key sensitive for Diffusion on Coordinates with keys: aaar=(35, 42, 45, 222, 3, 5),
aaag=(5, 42, 32, 29, 6, 2), aaab=(252, 4, 45, 76, 4, 7), aaar′=(34, 42, 45, 222, 3, 5)

By changing the key aaar a bit, for instance aaar′ given in Figure 2, we obtain distinct results: Figure 2(e)
and Figure 2(f) To prove how diffusion effect the scheme Diffusion on Coordinates can bring, we invoke
Cropping test. Figure 3 gives evidences of resistance against Cropping.

(a) Cropping to Figure 2(b) (b) Recover from Figure 3(a).

(c) Cropping to Figure 2(d) (d) Recover from Figure 3(c).

Figure 3: Cropping test for Diffusion on Coordinates with keys: aaar=(35, 42, 45, 222, 3, 5),
aaag=(5, 42, 32, 29, 6, 2), aaab=(252, 4, 45, 76, 4, 7), aaar′=(34, 42, 45, 222, 3, 5)

3.1.2 Experiments for Confusion on Pixels

Figure 4 shows the results for the second scheme Confusion on Pixels. We select three groups of key
tuple (aaai, pppi,uuui), i = 1, 2, 3. Figures 4(a), 4(b) and 4(c) are the images Ψ(aaai, pppi,uuui) respectively. Figures 4(d)
and 4(e) are two results, in which the former is obtained by applying Confusion on Pixels with key

101



Liebin YAN; Ruisong YE/Studies in Mathematical Sciences Vol.2 No.1, 2011

(a) Ψ(aaa1 ,ppp1 ,uuu1) (b) Ψ(aaa2 ,ppp2 ,uuu2)

(c) Ψ(aaa3 ,ppp3 ,uuu3) (d) Encrypted with key tuple
(aaa1, ppp1,uuu1) to all levels

(e) Encrypted with three groups of
key tuple to each level respectively

(f) R-level spectrum of Figure 4(e)

(g) G-level spectrum of Fig-
ure 4(e)

(h) B-level spectrum of Fig-
ure 4(e)

Figure 4: Confusion on Pixels: aaa1 = (110, 213, 31, 42, 2, 3), ppp1 = (7, 9, 31, 4, 220),
uuu1 = (8, 227, 19, 0, 5, 6), aaa2 = (120, 21, 42, 57, 5, 6), ppp2 = (99, 78, 31),

uuu2 = (61, 34, 5, 245), aaa3 = (77, 49, 81, 53, 7, 4), ppp3 = (54, 0, 0, 32), uuu3 = (92, 71, 115, 64, 95)
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(aaa1, ppp1,uuu1) to all levels of Figure 1(a) and the latter is applied with (aaai, pppi,uuui), i = 1, 2, 3 to each level
respectively. Figures 4(f), 4(g) and 4(h) are the RGB spectra of Figure 4(e). Apparently, the histograms of
the encrypted image is properly uniform and significantly distinct from the original Figure 1(a).

3.2 Statistics Analysis

In following, NPCR (Number of Pixel Change Rate), UACI (Unified Average Changing Intensity) and
Correlation of two adjacent pixels are invoked to show variants in statistical characteristics between the
original image and the encrypted one with these two schemes.

(a) Figure 1(a):R-level (b) Figure 1(a):G-level (c) Figure 1(a):B-level

(d) Figure 2(b):R-level (e) Figure 2(b):G-level (f) Figure 2(b):B-level

(g) Figure 4(e):R-level (h) Figure 4(e):G-level (i) Figure 4(e):R-level

Figure 5: Correlations of two vertical adjacent pixels in Figure 1(a), Figure 2(b) and Figure 4(e)
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3.2.1 NPCR and UACI

The Number of Pixel Change Rate (NPCR) and the Unified Average Changing Intensity (UACI) are respec-
tively defined by

NPCR =

∑m
i=1

∑n
j=1 D(i, j)

m × n
× 100%, (9)

UACI =

∑m
i=1

∑n
j=1 |A(i, j) − B(i, j)|
255 × m × n

× 100%, (10)

where

D(i, j) =

0, A(i, j) = B(i, j),
1, A(i, j) , B(i, j),

(11)

A and B are the original image and the encrypted one respectively.

We take Figure 3(b) and Figure 4(e) as the encrypted images for these two tests. Also we compare the
results with [1]. Table 1 shows the results that our schemes perform as great as other two methods do in
NPCR test. And in UACI test, scheme Confusion on Pixels performs much well while scheme Diffusion on
Coordinates is similar to Zhu (PS).

3.2.2 Correlation of Two Adjacent Pixels

The Correlation of two adjacent pixels tests are performed in vertical, horizontal and diagonal directions
with 2000 samples selected randomly.

Results are shown in Table 2, 3 and 4 for Figure 1(a), Figure 2(b) and Figure 4(e) respectively. Table 5 is
cited from [1], which shows the correlation of two adjacent pixels in their methods. Comparing to Table 5,
Table 3 and 4 show that our schemes perform very well in diffusion.

Table 1: Results of NPCR and UACI tests

Test NPCR (%) UACI (%)

Level R G B R G B

Figure 2(b) 99.257 99.428 99.036 21.248 23.576 14.601

Figure 4(e) 98.843 98.8205 99.266 32.659 30.357 27.500

PCS[1] 99.42 99.60 99.54 27.78 27.66 24.94

Zhu (PS)[1] 99.26 99.45 99.13 21.41 23.42 15.08

Table 2: Correlation coefficients of two adjacent pixels in Figure 1(a)

Image Figure 1(a)

Level R G B
vertical 0.97448 0.96853 0.87493

horizontal 0.95360 0.94160 0.84949
diagonal 0.92377 0.91441 0.81907

Figure 5 shows the Correlations distribution of two vertical adjacent pixels in Figure 1(a), Figure 2(b)
and Figure 4(e) respectively. And Table 2, 3 and 4 show the correlation coefficients for them respectively.
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Table 3: Correlation coefficients of two adjacent pixels in Figure 2(b)

Image Figure 2(b)

Level R G B
vertical -0.0086654 0.060830 -0.031240

horizontal -0.044967 -0.053667 -0.0073068
diagonal -0.021479 0.047668 0.0041064

Table 4: Correlation coefficients of two adjacent pixels in Figure 4(e)

Image Figure 4(e)

Level R G B
vertical -0.042666 -0.043872 -0.0008337

horizontal 0.0021105 -0.0060862 0.0041433
diagonal 0.014056 0.034820 -0.0026312

Table 5: Correlation coefficients of two adjacent pixels in PCS[1] and Zhu (PS)[1]

Method PCS Zhu (PS)

vertical 0.0581 0.3955
horizontal 0.1257 0.3913
diagonal 0.0504 0.3973

3.3 Key Space

The key space of Diffusion on Coordinates is determined by the number of the combination of the key
in mapping ϕ, namely the amount of the combinations of aaa. Clearly, It is (2n)3n2(2n − 1). Let f (n) =
(2n)3n2(2n − 1) − 24n, it is easy to prove that f (n) increases with the increase of n. and f (2) = 512, hence
f (n) is greater than 24n. Consequently, the lower bound of the key space of Diffusion on Coordinates is 24n.
For the case n = 8, it is 232.

Observe that the key in mapping ψ consists of aaa, ppp and uuu, by recalling the definitions of ppp and uuu in
section 2., we obtain that the amount of combinations of ppp is (2n)m−1 and (2n)m for uuu, where m ≤ 2n. To
get the upper bound of the key space of Confusion on Pixels, let m = n, consequently the upper bound g(n)
is 24n × (2n)2n−1 × (2n)2n

= 2n(2n+1+3). Note that g(n) is exponential of n(2n+1 + 3) with base 2 and in case
of n = 8, it is 24120, so we claim that the key space of Confusion on Pixels is huge enough. However, the
mapping ψ is not injection, as it invokes inner product hence the lower bound is difficult to estimate.

4. CONCLUSIONS

In this paper, we propose two mappings over GF(2n) one by one as well as two schemes that make use of
them for image encryption. According to the experiment results and discussion about key space, we are
sure that these two schemes are of high security, the former one is of strong resistance against cropping and
of diffusion, and the latter one changes statistical characteristics significantly.
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