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New Exact Jacobi Elliptic Function Solutions for
Nonlinear Equations Using F-expansion Method
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Abstract: In this work, Jacobi elliptic function solutions for integrable nonlinear equations using
F-expansion method are represented. KdV and Boussinesq equations are considered and new
results are obtained.
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1. INTRODUCTION

It is well known that nonlinear equations play a major role describing many phenomena in many fields of
sciences such as fluid mechanics, mathematical physics, biology, hydrodynamics, solid state physics and
optical fibers. A variety of powerful methods were used to obtain exact solutions for nonlinear equations for
examples inverse scattering method'!), Hirota bilinear form®!, Painlevé analysis!*!, tanh-function method!!!!
and it’s extensionsP 71,

Recently, the F-expansion method!'?! is used to obtain exact Jacobi elliptic function solutions which
give many exact solitary wave and periodic solutions for nonlinear equations.

In this work, we present a new technique using the F-expansion method to obtain new exact Jacobi el-
liptic function solutions for integrable nonlinear equations. Here, we don’t neglect the integration constants
in the resulting integrable ODEs using the wave transformation, use a transformation in which we express
the solution function as a sum of another independent function and a constant which are determined later,
hence we obtain new exact Jacobi elliptic function solutions for the integrable nonlinear equations.

2. NEW EXACT SOLUTIONS USING F-EXPANSION METHOD

Consider the nonlinear evolution and wave equations in the following forms
P(u, us, e, Uy, ...) =0 and  P(u, gy, Uy, Uy, ...) = 0. (D

Introducing the wave transformation
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u(x,t) = U¢), &=k(x—wt), 2)
to change (1) into a nonlinear ODE
owuu,u”,u”,.)=0, 3)
where ' = d%, k > 0 is the wave number and w is the travelling wave velocity.

Assuming (3) is integrated with respect to & as many times as possible without neglecting the integration
constants. For the evolution equations the maximum number of integration is 1 and for the wave equations
is 2. For reasons that will be explained below, we only leave the integration constant of the last integration.

To obtain the new exact solution, possibly having a determined constant term d, we introduce the trans-
formation
U=¢+d. 4)

Substituting (4) into (3) and setting the constant part equals to zero in the resulting nonlinear ODE in ¢
assuming that the function ¢ and its derivatives have the following asymptotic values

$(&) = ¢z as & — oo, &)

and
¢(n)(§) —0asé —» rooforn>1, ©

where the superscripts denotes differentiation to the order n, with respect to £&. Also we assume that ¢.
satisfies an algebraic equation in ¢, then we get the values of d.

Applying the F-expansion method, using the finite expansion

r

9 = S(F) =) aF’, (7

i=0

where r and a;(i = 0, 1, ...r) are constants to be determined later and F is the general solution of the ODE
equation in the form
F> = A+ BF? + CF*, (8)

in which A, B and C are given values.

The relations between A, B and C and the corresponding values of F(¢) are given in [12], for examples,
ifA=1,B=—(1+m?) and C = m* we obtain the general Jacobi sn-function solution in the form

F=sn+ (), )
and if A = m?, B = —(1 + m?) and C = 1, we obtain the general Jacobi ns-function solution in the form
F =ns(& + Cy), (10)

where C; is an arbitrary constant and 0 < m < 1 is the modules.

The positive integer r in (7) is determined by the balancing procedure in the resulting nonlinear ODE in
S. Thus, we have an algebraic system of equations from which the constants &, w, a; are obtained and the
function ¢ is determined, hence we get the new exact solutions of (1).

3. APPLICATIONS

Now, we give two examples of integrable nonlinear equations to find their new exact solutions as an appli-
cation of the suggested method.
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3.1 KdV Equation

Consider the KdV equation in the form™
Uy + auity + By = 0,
where a and S are constants.
Using (2) to change (11) into a nonlinear ODE and integrating once with respect to £, we obtain
1
—wU + EaU2 +BK*U” +Cd = 0,
where Cd is the integration constant.
Substituting (4) into (12), we have
1 1
(ad — w)¢ + §a¢2 + B¢ + d(zad+C - w) =0.
Using the conditions (5), (6) and that ¢ satisfies the algebraic equation
1
(ad - w)g. + J¢’ =0,
then the constant term in (13) equals zero, i.e.,
1
d(zad +Ci—w)=0.

Thus we have two cases according to the values of d as in the following
CaseA:d=0
In this case, (13) becomes
—wé + %0/(1)2 +Bk*¢" = 0.
Substituting (7) and making use of (8), we get

(BF + 2CF3) % + (A +BF? + CF4) dz—S} =0.

1 2
-wS + EaS + Bk 17

d*S

Balancing the nonlinear term S? with the derivative term T

to get r = 2 and using (7) to have

¢(&) = S(F) =ao +arF + ayF*.

(1)

(12)

13)

(14)

5)

(16)

a7)

(18)

Substituting (18) into (17) and setting zero all the coefficients of Fi(i = 0, 1,...,4), we get the system of the

algebraic equations
—wag + %aa(z) + ZBkZQZA =0,
—way + Bk*a\B + aapa; =0,
—way + %aa% + aapas + 4Bk*a,B = 0,
aaya; + 28k*a;C = 0,
tad} + 6pk*a,C = 0.
Solving the system (19), we obtain
48K (-Bx VB?=3AC)
ao = —, al = 07

a, = —12EC w = +4BI2 VB2 — 3AC.
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Using (4) and (18), we obtain the exact solutions

mo =25 [-B+ VB?-3AC - 3CF?,

21
£ = k(x ¥ 4pK* VB2 - 3ACt). @1
IfA=1,B=—(1+m? and C = m?, we obtain the Jacobi sn-function solutions
Us = @[1 +m? + V1 —m? + m* = 3m*sn® (§+C2)], 22)
£ =k(xF4pI3NT = m? + mr).
Let m — 1, we obtain the following solitary wave solutions
U = %ﬁ]‘zsech2 (k(x — 4Bkt + C2) , 23)
= 5 [1 = 3 tanh? (k(x + 46K%1) + G,
these solutions are exact solutions (& = 1, w = +48k* and C, = 0) which are obtained in [10].
If A =m? B=—(1+m? and C = 1, we obtain the Jacobi ns-function solutions
ul’zz‘%"z[l+m2-_0- Vl—m2+m4—3ns2(§+C2)], 24)
&= k<x¢4,8k2 1 — m? +m4t).
Let m — 1, we obtain the singular solitary wave solutions
U = —%cseh2 (k(x - 4,8k2t) + Cz),
_ R a2 > (25)
uy = 51 = 3 coth? (k(x + 48K%1) + Co)|.
Let m — 0, we obtain the periodic solutions
w = %2 |2 - 3ese? (k(x - 48K%0) + C). ”
uy = — 22 g2 (k(x + 4pK%1) + C) (20
a
CaseB:d = 2(w-C))
In this case, (13) becomes
1
(w—2C))¢ + an)z +Bk*¢" = 0. (27)
Substituting (7) into (27) and making use of (8), we obtain
1 2 2 3\ 45 2 n S _
(w=2C)S + 5aS? + pk (BF+2CF)d—F+(A+BF +CF)m =0. (28)

Substituting (18) into (28), setting zero all the coefficients of Fi(i = 0,1, ...,4) and solving the resulting
algebraic equations system, we obtain

ay= %2 (-B= VB*=3AC), a1 =0,

o (29)
ay = — 1€, w = 2Cy +4Bk* VB? - 3AC.
Now, we find the values of d corresponding to the values of w
w=2C; +4BK2VB? —3AC gives d = 2 VEIAC (30)
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Using (4) and (18), we obtain the exact solutions

o =%+ ¥ g+ VB -3AC - 3CF,

a

¢ = k(x—(2C1 + 48K> VB2 - 3AC)1),

where C is an arbitrary constant.

IfA=1,B=-(1+ mz) and C = m2, we obtain the Jacobi sn-function solutions

2
Upy = 2%+% l+m?+ 1—m2+m4—3m2sn2(§+C2)],

£=k(x—(2C1 £ 4B VI —m? + m*)1).
Let m — 1, we obtain the solitary wave solutions

i = 28+ 2 geeh? (k(x — (€ + 4Bk + ),
ur = 20+ B 1 - 3 tanh? (k(x - 2C) - 46870 + Co)|.

If A =m? B=—(1+m?) and C = 1, we obtain the Jacobi ns-function solutions

Uip = %+%[1+m2i m—3n52(§+C2)],
£ =k(x— (20, 42 NT = m2 + m*)1).

Let m — 1, we obtain the singular solitary wave solutions

@

ur = 25+ BE) 3 coth? (k(x - (2C1 - 4BK2) 1) + Co)|.

@

= - B e o~ 2+ 496) ) C3).

Let m — 0, we obtain the periodic solutions

=204+ B2~ Fese? (k(x - (261 +4pK2) 1) + C))

@ (2

uy = 280 P e (k (x - (201 - 48K7) 1) + C2).

@

Remark 1: When C; = 01in (31), we get the exact solutions (21).

3.2 Boussinesq Equation

Consider the Boussinesq equation in the form?!
2 2 —
U — Wollxy — AUxxxx _ﬁ(u )xx - O’

where wy, @ and S are constants.

Using (2) to change (37) into the following nonlinear ODE
(W* = wW)U" - ak*U"" - BU*" = 0.
Integrating twice and leave the integration constant of the last integration to obtain
(W - wy)U — ak*U” = BU* + C1d = 0,

where Cid is an integration constant.
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Substituting (4) into (39) to get

(W — w§ = 2pd)p — B¢ — ak’¢” + d(a)2 — W} - Bd + Cl) = 0.

Using the conditions (5), (6) and the algebraic equation
(@ - wj = 2Bd)¢. — Bg% = O,
then the constant term in (40) equals zero, i.e.,
d(w? - wf—pd+Cy) =0.
Thus we have the following two cases according to the values of d.
CaseA:d =0

Using the same way as in this case, we obtain the exact solutions
=2 [-B+ VB2 —3AC - 3CF?],
&= k(xi \/“)0 + 4ak? VB? - 3ACt|,
us4 = 2 [-B - VB —3AC - 3CF?,
&= k(xTL \/w(z) —4ak> VB2 - 3ACt).

IfA=1,B=—(1+m? and C = m?, we obtain the Jacobi sn-function solutions

2“" [1+m + V1 —m?2 +m* - 3m25n2(§+C2)],

E=k[x7F \/w0+4ak2 1 —m? + m*t],

2“" [1+m - V1—-m?2+m* - 3mzsn2(§-‘+C2)],

g:k(x¢ \/w0—4ak2 1—m2+m4t),

(40)

(41)

(42)

(43)

(44)

whenw = + \/wé + 4ak? VB2 — 3AC and C, = 0 in (44), we get the Jacobi sn-function solutions which are

obtained in [9].

Let m — 1, we obtain the following solitary wave solutions

lsech? (K (x % yJw} + 4ak?r) + C2),
w0 = 21 = 3tanh? (k{7 (o} — dakir) + o).
If A =m? B=—(1+m? and C = 1, we obtain the Jacobi ns-function solutions
= 2L 1+ m? + VI—m2 +m* = 3ns? ¢+ C)],
&= k(xTL \/‘”0 +4ak?> N1 — m? +m4t),
M [1+m? = VI —m2+m* = 3ns? (£ + C)|,
&= k(xTL \/‘”0 —4ak? V1 — m? +m4t).

Uiz

Let m — 1, we obtain the singular solitary wave solutions
up = 6‘;" csch? (k (x F \Jw) + 4a/kzt) n Cz),

0= 21 = 3coth? (k(x 7 (] — dakr) + Ca)|.
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Let m — 0, we obtain the periodic solutions
Uy = M [2 3cesc? ( ( 2+ 4a/k2t) + Cz)]
s =~ o2 (ks 7 ,/74akzt)+ c). “‘8)
CaseB:d = & L;‘]Jrc'
Using the same way as in this case, we obtain the exact solutions
wp=—5+ 2%"2 [—B+ M-wﬁ],
£= k(x¢ Vi +4ak2m—2C1t),
wsa =~ + 22 [_p - VEEZ3AC - 3CF?], “9)
£= k(xx Y —4akZM—2Clt).
IfA=1,B=—(1+m? and C = m?, we obtain the Jacobi sn-function solutions
wp= =S+ 28 [ 1+ m? + N1—m2 +m* = 3mPsn® (¢ + C),
&= k(x$ \/w(z) +4ak? V1 — m? +m4—2C1t),
Uz 4 = —%+ 2‘;%‘2[1+m2— m—3m2sn2(§+C2)], °0)
fzk(x¥ \/wg—4ak2 1 —m2+m4—2C1t).
Let m — 1, we obtain the solitary wave solutions
ujp = —% + 6“;%‘Zsech2 (k(x F ,/wg + 4ak? - 2C1t) + Cz), 51
g == + 2L [1 — 3 tanh? (k (x F Jwl - dak? — 2C1t) + cz)].
If A =m? B=—(1+m?) and C = 1, we obtain the Jacobi ns-function solutions
Upp = —% + 25;7]‘2[1 +m? + m—3ns2(§+cz)],
§=k(x¢ \/w(2)+4ak2 1 —m?+m*-2Ct],
s = =S+ 2E (1 g - NTomB = 305 (64 C)] o
£=i[x= \/wo_4akzm_zclt).
Let m — 1, we obtain the singular solitary wave solutions
ma = =5 - “osch? (k(xF \Joj +4ak? - 2€11) + C2), 5
e = =5+ 2 1= 3o k(v o - dak? - 2001) + o).
Let m — 0, we obtain the periodic solutions
ma = =G+ 2 2= 35 (k(x 7 (Juj + dak2 = 2011) + G, 56

us == 67; esc? (k(x % o} —dak? —2011) + €.

Remark 2: When C; = 01in (49), we get the exact solutions (43).
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4. CONCLUSIONS

A new technique is presented, by adding integration constants, using the transformation (4) and the F-
expansion method, to obtain new exact solutions for the integrable nonlinear equations.

By this technique, we obtained the new exact solutions of the KdV equation in (31)-(36) and the Boussi-
nesq equation in (49)-(54) which all give the exact solutions obtained before by the F-expansion method as
special cases.

Moreover, new results can be obtained if we use rest of the relations between the values A, B and C and
the corresponding values of F(£) given in [12].

The presented technique can be applied for many integrable nonlinear equations in which the odd- and
even-order derivative terms don’t coexist.
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