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Abstract: The purpose of the present work is to construct new geometrical models for motion
of plane curves. We have obtained nonlinear partial differential equations and have discussed
the solutions of these equations using symmetry groups methods. Also, geometric interpretation
for these solutions are given through the Gaussian and mean curvatures to the soliton surfaces
attached to the solution of the evolving problem.
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1. INTRODUCTION

We shall consider motion of curves in a plane. The problem is interesting since we may set two different
subjects in the same theoretical basis. One is a geometrical interpretation of integrable systems. Connec-
tions between the differential geometry of curve motions and the integrable systems have been discussed.
It has been shown that the nonlinear Schrödinger equation describes the dynamics of a thin, non-stretching
vortex lament[1]. The analysis is extended to more general types of motion and other integrable systems[2, 3].
The other is surface dynamics, the dynamics of shapes in physical and biological systems[4, 5]. Examples
include crystal growth[4, 6] propagation ame fronts[7] and the Saman-Taylor problem[8]. With the intended
application in both subjects, we shall present a general formulation of evolving curves in 2-dimensions.

We will describe the motion of curves by considering a smooth curve in three-dimensional, parameter-
ized by u. Let r(u, t) denotes the position vector of a point on the curve C at time t. There is a metric on the
curve is given by

g(u, t) =<
∂r
∂u
,
∂r
∂u
>, (1)

where <, > is the Euclidean scalar product. The arc length along the curve is given by

s(u, t) =
∫ u

0

√
g(u, t)dt. (2)
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Let F : I = [0, u] ⊂ ℜ → S O(n) be a linear mapping, where F(s) = [T, n, b]t, F(0) = I, s ∈ I and
F(s) ∈ S O(1, 3) is an orthogonal matrix. The matrix F(s) is the Frenet matrix which define the Frenet frame
and depends on one parameter s. The group S O(1, 3) called one parameter Lie group along the curve in the
space. We may use either {u, t} or {s, t} as coordinates of a point on the space curve. For the curve r(u, t),
let {T, n, b} denote respectively the unit tangent, normal and binormal vectors of the Frenet frame. The unit
tangent vector T is defined as

T =
∂r
∂s
= g−

1
2
∂r
∂u
, (3)

∂F
∂s
= AF, (4)

in which A is called Cartan matrix which is given by

A =


0 k 0
−k 0 τ

0 −τ 0

 , (5)

where ∂
∂s := ∂

∂s |t and k(s, t) and τ(s, t) are respectively the curvature and torsion of the curve at the points r.
Dynamics of the curve is expressed through the ṙ of the curves as the following

ṙ :=
∂r
∂t
|α = Un + Vb +WT. (6)

The motion is said to be local if {U,V,W} depends only on local values of {k, τ} and their derivatives[6]. For
further discussions, it is important to notice that u and t are independent but s and t are not independent. As
a consequence, while u and t derivatives commute, s and t derivatives in general do not commute as in the
following

∂

∂t
∂

∂u
=
∂

∂u
∂

∂t
,

∂

∂t
∂

∂s
− ∂
∂s
∂

∂t
= −(

∂W
∂s
+ kU)

∂

∂s
.

(7)

2. TWO-DIMENSIONAL MOTION

Motion in a plane is characterized by V ≡ 0 and τ ≡ 0 and from (4) and (6) we have

∂F
∂s
= AF, (8)

where

A =
(

0 k
−k 0

)
, F =

(
T
n

)
, (9)

ṙ = Un +WT. (10)

We are in a position to derive time evolutions of geometrical quantities. Using (7) in (8) and (10), we obtain

∂F
∂t
= EF, (11)

ġ = 2g(
∂W
∂s
− kU), (12)
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k̇ = 2g(
∂2U
∂s2 + k2U +

∂k
∂s

W), (13)

where E is called the evolution matrix and is given by

E =
(

0 ∂U
∂s + kU

−( ∂U
∂s + kU) 0

)
. (14)

Here, F may be a column vector or a square matrix,A, E belong to the Lie algebra g of certain linear Lie
group[9, 10]. From (2) and (12), time development of the arc length is given by

ṡ =
∫ α

0
g

1
2 (
∂W
∂s
− kU)dα

=W(s, t) −
∫ s

o
kUds,

(15)

provided W(0, t) = 0. Because k = k(s(t), t), we have

d
dt
=
∂

∂t
+ ṡ
∂

∂s
,

k̇ =
∂k
∂t
+ (W(s, t) −

∫ s

0
kUds)

∂k
∂s
.

(16)

From (13), it follows that[11]

∂k
∂t
=
∂2U
∂s2 + k2U +

∂k
∂s

∫ s

0
kUds. (17)

Notice that k(s; t), and hence the 2D motion of the curve, follows from specifying U(s; t) and then inte-
gration (17). The tangential component W(s; t) determines how points parameterized by u move along the
curve, but it does not affect the shape of the curve.

3. SYMMETRY GROUP

Now, we present the most general Lie group of point transformations, for obtaining solutions to the partial
differential equations governing the evolving model for the considered problem[12, 13, 17].

Definition 3.1 We consider a scalar m −th order PDE represented by

∆(s, k(m)) = 0. (18)

Now, we want to present the most general Lie group of point transformations, which apply on obtaining
equations. Where s = (si), i = 1 . . . p is a vector for which the components si are independent variables and
k = (k j) ( j = 1 . . . q) is a vector coset of k j dependent variables, and k(m) = ∂

mk
∂sm . The infinitesimal generator

of the one-parameter Lie group of transformations for equation (18) is

X =
p∑

i=1

ζ i(s, k)
∂

∂si +

q∑
χ=1

ϕχ(s, k(m))
∂

∂kχ
, (19)

where ζ i(s, k), ϕχ(s, k) are the infinitesimals, and the m-th prolongation of the infinitesimal generator (19) is
(see [5–8])

pr(m)X = X +
q∑
χ=1

∑
j

ϕ
χ
j (s, k(m))

∂

∂kχj
, (20)
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where

ϕ
χ
j (s, k(m)) = D j(ϕχ −

p∑
i=1

ζ ikχi ) +
p∑

i=1

ζ ikχj,i. (21)

and D is the total derivative operator defined by

D j =
∂

∂s j + kχj
∂

∂kχ
+ kχi j + . . . , k j =

∂k
∂s j , j = 1, . . . , p. (22)

A vector field X is an infinitesimal symmetry of the system of differential equations (18) if and only if it
satis.es the infinitesimal invariance condition

pr(m)X(∆)|∆=0 = 0. (23)

4. SOLITON GEOMETRY

In this paper, we construct the soliton surfaces associated with the single soliton solutions (similarity so-
lution) of the equation (17). For this purpose, if k = k(s, t) is a similarity solution of Eq. (17) we have a
solution surface σ given from the Monge patch f = (s, t, k(s, t)). The tangent vectors fs , ft for the soliton
surface σ are given by

fs = (1, 0, ks),
ft = (0, 1, kt).

(24)

The normal unit vector field on the tangents plane Tpσ is given by

N =
fs ∧ ft
| fs ∧ ft |

. (25)

The first and second fundamental forms on σ are defined respectively by

I =< d f , d f >= g11ds2 + 2g12dsdt + g22dt2,

II =< −d f , dN >= L11ds2 + 2L12dsdt + L22dt2,
(26)

where the tensor gi j and Li j are given by

g11 =< fs, fs >, g12 =< fs, ft >, g22 =< ft, ft >,

L11 =< fss,N >, L12 =< fst,N >, L22 =< ftt,N > .
(27)

The Gauss equations associated with σ are

fss = Γ
1
11 fs + Γ

2
11 ft + L11N,

fst = Γ
1
12 fs + Γ

2
12 ft + L12N,

ftt = Γ1
22 fs + Γ

2
22 ft + L22N,

(28)

while the Weingarten equations comprise

Ns =
g12L12 − g22L11

g
fs +

g12L11 − g11L12

g
ft,

Nt =
g12L22 − g22L12

g
fs +

g12L12 − g11L22

g
ft,

(29)
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where
g = | fs ∧ ft |2 = g11g22 − g2

12, (30)

The function Γi
jλ in (28) are the usual Christoffel symbols given by the relations

Γi
jλ =

1
2

gil(gil,λ + gλl, j − g jλl,l). (31)

The compatibility conditions ( fss)t = ( fst)sand ( fst)t = ( ftt)sapplied to the linear Gauss system (28) produce
the nonlinear Mainardi-Codazzi system

(
L11√

g
)t − (

L12√
g

)s +
L11√

g
Γ2

12 − 2
L12√

g
Γ2

12 +
L22√

g
Γ2

11 = 0,

(
L22√

g
)s − (

L12√
g

)t − 2
L12√

g
Γ1

22 +
L11√

g
Γ1

12 +
L22√

g
Γ1

11 = 0,
(32)

or, equivalently,

L11t − L12s = L11Γ
1
12 + L12(Γ2

12 − Γ1
11) − L22Γ

2
11,

L12t − L22s = L11Γ
1
22 + L12(Γ2

22 − Γ1
12) − L22Γ

2
12.

(33)

The Gaussian and mean curvatures at the regular points on the soliton surface are given by respectively

K = k1k2 =
L
g
=

L11L22 − L2
12

g11g22 − g2
12

, g , 0, (34)

H =
1
2

(k1 + k2) =
1
2

L11g22 − 2L2
12g12 + L22g11

g11g22 − g2
12

, (35)

where g = det(gi j), L = det(Li j) and k1, k2 are the principal curvatures. The surface for which K = 0 is
called parabolic surface, but if k1 = 0 and k2 = constant or k1 = constant and k2 = 0, we have surface
semi round semi .at (cylindrical like surface).The integrability conditions for the systems (11) and (8) are
equivalent to the Mainardi-Codazzi system of PDE (32). This give a geometric interpretation for the surface
defined by the variables s, t to be a soliton surface[9, 10, 15, 16].

5. APPLICATION

Here, we consider special types of evolving curves by choosing the normal velocity U as in the following
categories.

5.1 Case I: U = −ks

In equation (17), we get the known modified Korteweg-de Vries (mKdV) equation[18]

kt +
3
2

k2ks + ksss = 0, (36)

the solution space M has coordinates (s, t, k) and its solutions k = f (s, t) define a 2-dimensional surface of
M ⊂ ℜ3. Using (18) , (19) the prolongation of a vector field

X = ξ
∂

∂s
+ η
∂

∂t
+ ϕ
∂

∂k
, (37)
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on M has the form

Pr(m)X = ξ
∂

∂s
+ η
∂

∂t
+ ϕ
∂

∂k
+

∑
J

ϕJ ∂

∂kJ
, (38)

where ζ, η and ϕ are functions of the variables s, t and k, whose coefficients in view of (21) are given by the
explicit formulas

ϕs = Ds(ϕ − ζks − ηkt) + ζkss + ηkst,

ϕt = Dt(ϕ − ζks − ηkt) + ζkst + ηktt,

ϕss = Dss(ϕ − ζks − ηkt) + ζksss + ηksst.

(39)

From (36) and (38) it is easy to see that the vector field X is an infinitesimal symmetry of the mKdV equation
(36) if and only if

ϕs = Ds(ϕ − ζks − ηkt) + Pr(m)X(kt +
3
2

k2ks + ksss)

= ϕt + 3ϕkks +
3
2

k2ϕs + ϕsss = 0,
(40)

whenever kt +
3
2 k2ks + ksss = 0.

From the prolongation formulas (39), and equating the coefficients of the independent derivative mono-
mials to zero, leads to the infinitesimal determining equations which together with their differential conse-
quences reduce to the following system of PDEs

ϕsss + ϕt +
3
2

k2ϕs = 0,

ηt − 3ζs = 0,
ζk = ηk = ηs = ϕkk = 0,

3kϕ + 3ϕssk − ζsss + 3k2ζs − ζt = 0,
ϕsk − ζss = 0.

(41)

Then the solutions of system (41) are of the following form

ζ =
1
3

c1s + c2, η = c1t + c3, ϕ = −
1
3

c1k. (42)

From (37) if follows the solutions (42) define the three-dimensional mKdV symmetry algebra with the basis
given by

X1 =
1
3

s
∂

∂s
+ t
∂

∂t
− 1

3
k
∂

∂k
, X2 =

∂

∂s
, X3 =

∂

∂t
. (43)

The combination of space and time translations (cX2 + X3) lead to a reduction of (36) to an ordinary dif-
ferential equation (ODE) through the transformation y = s − ct and w(y) = k where c is the speed of the
traveling wave. This reduction is given by

−cω′ +
3
2
ω2ω′ + ω′′′ = 0,

(′
≡ d

dy

)
. (44)

By integrating (44) twice to obtain the following ODE (we take the integration constant to be zero if bound-
ary conditions ω,ω′ and ω′′ tend to zero at y→ ±∞)

−cω2 +
1
4
ω4ω

′2 = 0, (45)
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then

ω′ = ±
√

cω2 − 1
4
ω4. (46)

Thus, we have a solution as in the form

k = ±2
√

csech(
√

c(s − ct)). (47)

This solution is a similar solution to the PDE (36), This solution can be written in the Monge form k = k(s, t)
which define a regular surface as shown in Figure (1). This surface is a soliton surface (1 + 1). From (34) and
(35), one can see that the Gaussian and mean curvatures of the soliton surface (47) are given by respectively

K = 0,

H =
c

3
2 (1 + c2)(−3 + cosh(

√
c(s − ct)))sech(

√
c(s − ct))2

2(1 + 4c2(1 + c2)sech(
√

c(s − ct))2tanh(
√

c(s − ct))2)
3
2

.
(48)

In the following Figure 1, a soliton surface is portrayed where c = 1, −5 ≤ s ≤ 5, 0.1 ≤ t ≤ 2.

Figure 1: Soliton surface of (36)

The symmetry generator X1 =
1
3 s ∂
∂s + t ∂

∂t +
1
3
∂
∂k leads to the invariants y = t

s3 and ω = sk. After some
detailed and tedious calculations, (36) becomes an ODE in the form

−ω′ + 9
2

yω2ω′ +
3
2
ω3 + 27ω′′′y3 + 135ω′′y2 + 6ω + 114yω′ = 0, (49)

which can be solved numerically as show in Figure 2, with initial conditions (ω(1) = 1, ω′(1) = 2 and
ω′′(1) = 3).

Remarks: K = 0 and H , 0 characterize a parabolic surface of cylindrical type. In the following cases
using the same technique used in case one.

5.2 Case II: U = −kks

In this case, equation (17) becomes

kt + 3kskss + kksss +
4
3

ks = 0. (50)
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Figure 2: Numerical solution of (49)

Lie point symmetry for this equation is given by

X1 =
1
4

s
∂

∂s
+ t
∂

∂t
− 1

4
k
∂

∂k
, X2 =

∂

∂s
, X3 =

∂

∂t
. (51)

The traveling wave (soliton type) solution is obtained by X = cX2 + X3 = c ∂
∂s +

∂
∂s , by which (50) becomes

the ODE (with the new independent variable y = s − ct, c being the speed of the wave)[14]

−cω′ + 3ω′ω′′ + ωω′′′ +
4
3
ω3ω′ = 0, (52)

which after some manipulations can be shown to have the conserved form

D(−cω2 + ω
′2 + ωω′′ +

1
3
ω4) = 0. (53)

Thus, we have the second-order ODE (we take the integration constant to be zero)

−cω2 + ω
′2 + ωω′′ +

1
3
ω4 = 0. (54)

Eq. (54) has the Lie point symmetry ∂
∂y which leads to invariants θ = ω and δ = ω′ so that dδ

dθ =
ω′′

ω′ by
which (54) can be written as

dδ
dθ
= −1
δ

(
δ2

θ
+
θ3

3
− c), (55)

which has solution

δ(θ) = ±
√
−θ

4

9
+

2cθ
3
+

C1

θ2
. (56)

Substituting θ and δ, we get

dω
dy
= ±

√
−ω

4

9
+

2cω
3
+

C1

ω2 . (57)

Thus, a traveling wave solution of (57) is given by

s − ct =
∫ k dω

±
√
−ω4

9 +
2cω

3 +
C1
ω2

. (58)
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The integral can be found in terms of special functions. For e.g. if the constant is set to zero, the integral is
Jacobi F. If we take c = 1 the solution becomes

ω = ±
216

1
3 S N( 1

12

√
216

1
3
√

3 − 66
2
3 (s − t), 1

2

√
2 + 2I

√
3)2

−
√

3 − 3I + 216
1
3 S N( 1

12

√
216

1
3
√

3 − 66
2
3 (s − t), 1

2

√
2 + 2I

√
3)2

, (59)

Thus, we have Figure 3: Then Gaussian and mean curvatures are

K = 0,
H = Jacobi(F).

(60)

In Figure 3, a soliton surface is portrayed where c = 1, −5 ≤ s ≤ 5, 0.1 ≤ t ≤ 2.

Figure 3: Soliton surface of (50)

The symmetry generator X1 =
1
4 s ∂
∂s + t ∂

∂t −
1
4 k ∂
∂k leads to the invariants y = t

s4 and ω = sk. After some
detailed and tedious calculations, (50) becomes an ODE in the form

− ω′ + 312yωω′ + 12ω2 +
4
3
ω4 + 64y3ωω′′′ + 336y2ωω′′

+
16
3

y3ω3ω′ + 192y3ω′ω′′ + 336y2ω
′2 = 0.

(61)

The numerical solution of Eq. (61) is shown in Figure 4 (with initial conditions ω(1) = 1, ω′(1) = 2 and
ω′′(1) = 3).

5.3 Case III: U = −k2ks

In this case, equation (17) becomes

kt + 23k3
s + 6kk6kss + k2ksss +

5
4

ks = 0. (62)

Lie point symmetry for this equation is given by

X1 =
1
5

s
∂

∂s
+ t
∂

∂t
− 1

5
k
∂

∂k
, X2 =

∂

∂s
, X3 =

∂

∂t
. (63)

It admits the symmetries X2 and X2, traveling wave solutions are obtainable by the substitution y = s− ct (c
is the wave speed), so that (62) becomes

ω2ω′′′ + 6ωω′ω′′ + (2ω
′2 − c +

5
4
ω4)ω′ = 0, (64)
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Figure 4: Numerical solution of (61)

by integrating which, we get

−cω + 2ωω
′2 + ω2ω′′ +

1
4
ω5 = 0, (65)

where we take the integration constant to be zero. Now solving the equation (65) with the lie symmetry ∂
∂y

having invariants θ = ω and δ = ω′. That is, by (54) dδ
dθ =

ω′′

ω′ can be written as

dδ
dθ
= −1
δ

(
2δ2

θ
+
θ3

4
− c
θ

)
, (66)

which leads to

δ(θ) = ±
√
− θ

4

16
+

c
2
+

C1

θ4
. (67)

Substituting θ and δ gives

s − ct =
∫ k dω

±
√
− θ416 +

c
2 +

C1
θ4

. (68)

then, we get solution

k = ±
2S N( 1

4

√
2
√√

2
√

c(s − ct), I)√ √
2Root o f (Z2−c, index=1)

c

. (69)

Thus, we have Figure 5. At c = 1, the Gaussian and mean curvatures are

K = 0

H =
−5I(CN( 1

2 (s − 2t), I)2 − IDN( 1
2 (s − 2t), I)2)S N( 1

2 (s − 2t), I)

2
3
4 (10
√

2CN( 1
2 (s − 2t), I)2(DN 1

2 (s − 2t), I)2 + 2
√

2)
3
2

.
(70)

In the following Figure 5, a soliton surface is portrayed where c = 1, −5 ≤ s ≤ 5, 0.1 ≤ t ≤ 2.

Also, the scaling symmetry 1
5 s ∂
∂s + t ∂

∂t −
1
5 k ∂
∂k with invariants y = t

s5 ,ω = sk, leads to the reduced
equation

ω′ − 20ω3 − 660yω2ω′ − 675y2ω2ω′′ − 1300y2ωω
′2 − 750y3ωω′ω′′

− 5
4
ω5 − 25

4
yω4ω′ − 125y3ω2ω′′ − 250y3ω

′3 = 0.
(71)

We have solved the equation (71) with with initial conditions ω(1) = 1, ω′(1) = 2 and ω′′(1) = 3). Numeri-
cal simulation is demonstrated in Figure 6.
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Figure 5: Soliton surface of (62)

Figure 6: Numerical solution of (71)

6. CONCLUSIONS

We have constructed two new geometrical models for motion of plane curves other than the mKdV equation,
which is known before and we have created solutions using symmetry methods and conclude that these
equations represent cylindrical surfaces as the Gaussian curvature of these surfaces equal to zero.
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