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Time-optimal Control of Petrowsky Systems with
Infinitely Many Variables and Control-state Constraints
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Abstract: In this paper, the time-optimal control problem for n × n differential systems of
Petrowsky type with infinitely many variables and control-state constraints are considered. For
some different cases of the observation, the necessary optimality conditions of optimal control
are obtained by using the generalized Dubovitskii-Milyutin Theorem (Theorem 1.8.1, [1]).
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1. INTRODUCTION

The most widely studies of the problems in the mathematical theory of control are the “time optimal” control
problems. The simple version, is the following optimization problem:

find (u, y) ∈ C([0,∞); U × Y) :

0 < t → min
u(t) ∈ Uad

y(t) ∈ Yad.


where Uad,Yad are spaces of admissible control and states respectively.

In order to explain the results we have in mind, it is convenient to consider the abstract form of the
Dubovitskii-Milyutin theorem.

Let X be Banach space, Qk ⊂ X, int Qk , ∅,k = 1, . . . , p represent inequality constraints, Qk ⊂ X,
k = p + 1, . . . ,m represent equality constraints and I : X → R is given functional.

Theorem 1.1 (Theorem 1.8.1, [1]) Assume that

(i) I : X → R is convex and continuous,

(ii) the cones Qk, k = 1, . . . ,m are convex,

(iii) x̂ ∈
(∩p

k=1 intQk

)∩ (∩m
k=p+1 Qk

)
,
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(iv) the cones [RTC(Qk, x0)]∗, k = p + 1, . . . ,m are either of the same sense or of the opposite sense,
then x0 is a solution of the problem

min

I(x), x ∈
m∩

k=1

Qk

 ,
if and only if the following equation (Euler-Lagrange equation) must hold:

f0 +
m∑

k=1

fk = 0.

where f0 ∈ [RFC(I, x0)]∗, fk ∈ [RAC(Qk, x0)]∗, k = 1, . . . p and fk ∈ [RTC(Qk, x0)]∗, k = p + 1, . . .m with
not all functionals equal to zero simultaneously.

The above generalization of the Dubovitskii-Milyutin theorem is based on the definitions of the regular
cones RTC, RFC, RAC and cones of the same sense and of the opposite sense which are introduced there
(see Ref. [1]). But for the purpose of our problems we are going to use the following sufficient condition
for two cones to be of the same sense.

Theorem 1.2 (Theorem 3.3, [2]) Let C1 be a cone of the form C1 = {(x1, y1) ∈ X × Y : x1 = My1} , C2 =

X × Ĉ2, where Ĉ2 is a cone in Y (X,Y-normed spaces). If the operator M is linear and continuous, then

C∗1 =
{
(x∗1, y

∗
1) ∈ (X × Y)∗ : y∗1 = −M∗x∗1

}
,

C∗2 =
{
(0, y∗2) ∈ (X × Y)∗ : y∗2 ∈ Ĉ2

}
,

and the cones C∗1,C
∗
2 are of the same sense.

Various optimization problems associated with the optimal control of distributed parameter systems
have been studied in [1, 3–6].

The problem of time-optimal control associated with the hyperbolic systems have been discussed in
some papers (see, e.g., Ref. [7]) in which the existence of a time-optimal control of system governed by a
hyperbolic equation systems involving Laplace operator has been discussed. In [3], the maximum principles
for the time optimal control for wave equation is given by reduction of the second-order wave equation to
a first-order system. All these results concerned the time optimal control problems of systems governed by
only one hyperbolic equation and only control constraints.

In Refs. [8, 9], the above results for systems governed by one hyperbolic equation are extended to
the case of n × n co-operative hyperbolic systems and Petrowsky systems respectively with only control
constraints.

In the present paper, the above results are extended to the case of n×n differential systems of Petrowsky
type with infinitely many variables and control-state constraints, the necessary optimality conditions of op-
timal control for n × n Petrowsky systems with control-state constraints are obtained. First, time optimal
control problem is replaced by an equivalent one with fixed time, then, for a different cases of the observa-
tion (position, velocity and position-velocity) observation, the necessary optimality conditions are derived
by using some generalization of the Dubovitskii-Milyutin Method for the case of m equality and inequality
constraints[1].

2. SOBOLEV SPACES OF INFINITE NUMBER OF VARIABLES

Let (Pk)∞k=1 be a fixed sequence of positive twice continuous differentiable probability weights, with respect
to this sequence onℜ∞ = ℜ1 ×ℜ1 × . . . , of points x = (xk)∞k=1, (xk ∈ ℜ1) the (weighted) product measure
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dρ(x) can be introduced in the following way

dρ(x) = (P1(x1)dx1) ⊗ (P2(x2)dx2) ⊗ . . .
= (dρ1(x1)) ⊗ (dρ2(x2)) ⊗ . . . .

The examples of construction of the measure dρ(x) are given in Ref. [10].

Below we consider G ⊂ ℜ∞ with G be a bounded open domain with infinitely differentiable boundary
Γ.

We denoted by L2(G, dρ) the space of all square integrable functions on G which is a Hilbert space[11]

for the scalar product

(ϕ, ψ)L2(G,dρ) =

∫
G
ϕ(x)ψ(x) dρ(x).

The Sobolev space of order ℓ (with infinite number of variables), Wℓ(G, dρ) is defined by

Wℓ(G, dρ) := {y|Dαy ∈ L2(G, dρ), ∀α, | α |≤ ℓ},

such that

∥y∥Wℓ(G,dρ) :=
(∑
|α|≤ℓ
∥Dαy∥2L2(G,dρ)

) 1
2

< ∞,

where

Dα = Dα1
1 Dα2

2 . . . , α = (αi)∞i=1 , | α |=
∞∑

i=1

αi,

and

Dky(x) =
1

√
Pk(xk)

∂

∂xk
(
√

Pk(xk)y(x)).

Next one can define the following space

Wℓ
0(G, dρ) := {y| y ∈ Wℓ(G, dρ), Dαy = 0 on Γ , |α| ≤ ℓ − 1, ℓ > 1}.

For the spaces Wℓ
0(G, dρ) ( ℓ = 1, 2, . . . , ) one can construct their dual W−ℓ(G, dρ).

The duality between spaces Wℓ
0(G, dρ) and W−ℓ(G, dρ) is induced by the scalar product of the space W0(G,

dρ) = L2(G, dρ). For them we have the following chain

Wℓ
0(G, dρ) ⊆ L2(G, dρ) ⊆ W−ℓ(G, dρ).

3. PETROWSKY SYSTEMS WITH INFINITE VARIABLES

For y = (yi)n
i=1, ϕ = (ϕi)n

i=1 and t ∈ [0,T ], let us define a family of continues bilinear forms

π(t; ., .) : (Wℓ
0(G, dρ))n × (Wℓ

0(G, dρ))n →ℜ,

by

π(t; y, ϕ) =
n∑

i=1

∫
G

∑
α≤ℓ

∞∑
k=1

(
Dα

k yi

) (
Dα

kϕi

)
+ ai(x, t)yiϕi

 dρ(x) −
n∑

i, j=1

∫
G

ai j(x, t)y jϕidρ(x), (1)
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where
a(x, t) and ai j(x, t) are positive functions in L∞(S ),
ai j = a ji (symmetric condition )
ai j = 0 when i = j

ai ≥
n∑

j=1

ai j, ∀i = 1, 2, . . . n


(2)

The bilinear form (1) can be but in the operator form:

π(t; y, ϕ) =
n∑

i=1

∫
G

∑
α≤ℓ

∞∑
k=1

(−1)α
(
D2α

k yi

)
+ ai(x, t)yi

 ϕidρ(x) −
n∑

i, j=1

∫
G

ai j(x, t)y jϕidρ(x)

= ⟨A(t)y, ϕ⟩(L2(G,dρ))n

where A(t) is n × n matrix operator which maps
(
Wℓ(G, dρ)

)n
onto

(
W−ℓ(G, dρ)

)n
and takes the form

A(t) =


B1(t) a12 . . . a1n

a21 B2(t) . . . a2n
...

...
...

...

an1 an2 . . . Bn(t)


n×n

,

where Bi(t) =
[∑

α≤ℓ
∑∞

k=1(−1)α
(
D2α

k

)
+ ai(x, t)

]
are bounded self-adjoint elliptic partial differential opera-

tors of order 2ℓ with infinite number of variables.

It is easy to see that i-th component (A(t)y)i takes the form

(A(t)y)i =

∑
α≤ℓ

∞∑
k=1

(−1)α
(
D2α

k

)
+ ai(x, t)

 yi −
n∑

j=1

ai j(x, t)y j.

Notation ∥y∥m =
(∫

G m(x, t)y2dρ(x)
) 1

2 .

Lemma 3.1
n∑

i, j=1

∫
G

ai j(x, t)yiy jdρ(x) ≤ 1
2

n∑
i=1

∥yi∥2∑n
j=1 ai j

.

Proof. Using Cauchy Schwarz inequality, we have

n∑
i= j=1

∫
G

ai j(x, t)yiy jdρ(x) ≤
n∑

i, j=1

∥yi∥ai j∥y j∥ai j

≤ 1
2

n∑
i, j=1

[
∥yi∥2ai j

+ ∥y j∥2ai j

]
=

1
2

n∑
i=1

∥yi∥2∑n
j=1 ai j

.

Theorem 3.2 Assume that (2) holds, then, there exist a unique weak solution

y = (yi)n
i=1 ∈

{
y : y ∈ L2(0,T ; (Wℓ

0(G, dρ))n),
∂y
∂t
∈ (L2(S ))n

}
,
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satisfying the following n × n Petrowsky system involving operators with infinite number of variables:

∂2yi

∂t2 + (A(t)y)i = ui, ui ∈ L2(S ) in S =]0,T [×G,

yi(x, 0) = yi,0(x), yi,0(x) ∈ Wℓ
0(G, dρ) in G,

y′i(x, 0) = yi,1(x), yi,1(x) ∈ L2(G, dρ) in G,

Dωyi = 0, ω = 0, 1, . . . , ℓ − 1 on Σ =]0,T [×Γ.


(3)

Proof. In fact

π(t; y, y) =
n∑

i=1

∫
G

∑
α≤ℓ

∞∑
k=1

∣∣∣(Dα
k yi

∣∣∣2 dρ(x) +
n∑

i=1

∥yi∥2ai
−

n∑
i, j=1

∫
G

ai j(x, t)yiy jdρ(x).

By using Lemma 3.1, we obtain

π(t; y, y) ≥
n∑

i=1

∫
G

∑
α≤ℓ

∞∑
k=1

∣∣∣(Dα
k yi

∣∣∣2 dρ(x) +
n∑

i=1

[
∥yi∥2ai− 1

2
∑n

j=1 ai j

]
.

Hence

π(t; y, y) + c0∥y∥2(L2(G,dρ))n ≥ c1∥y∥2(Wℓ
0(G,dρ))n , c0, c1 > 0.

Now, since π(t; y, ϕ) is symmetric ,we can apply Theorem 1.1 chapter4 of Lions[4] with

V = Wℓ
0(G, dρ), H = L2(G, dρ), V ′ = W−ℓ(G, dρ),

to obtain the result.

4. CONTROL PROBLEM

Let us consider the following optimization problem

T → min, (4)

under the constraints
∂2yi

∂t2 + (A(t)y)i = ui in S ,

yi(x, 0) = yi,0(x) in G,

y′i(x, 0) = yi,1(x) in G,

Dωyi = 0, ω = 0, 1, . . . , ℓ − 1 on Σ,


(5)

z(x, T ) = D
(
y(x,T ), y′(x,T )

) ∈ K, (6)
u ∈ Uad. (7)

Let us denote by U = (L2(S ))n, the space of controls, by Y := L2(0,T ; (Wℓ
0(G, dρ))n) × (L2(S ))n the

space of states, by a Hilbert spaceH the space of observations.
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We assume that

Uad is a closed , convex subset of U,

K be a closed convex subset of H with a non -empty interior,

D is a linear operator from (Wℓ
0(G, dρ))n × (L2(G, dρ))n → H .

 (8)

Notation 1 We will call the problem (4)-(7) under assumptions (8), problem I

The optimization problem I can be replaced by another equivalent one with a fixed time T . To show
that we need tow auxiliary lemmas.

Lemma 4.1 Let T 0 > 0 be the optimal time for the problem I. If int K , ∅ then

z(x,T 0) = D
(
y(x,T ), y′(x, T )

) ∈ ∂K ( boundary of K), (9)

for any set y satisfying (5)-(6).

Proof. Any solution of (5) is continuous with respect to t. If (9) is not true, then there exists an admissible
state y such that the observation z(x,T 0) ∈ int K. Thus a T̂ < T 0 exists so that z(x, T̂ ) ∈ ∂K . This
contradicts the optimality of T 0 and hence (9) must be fulfilled.

Lemma 4.2 Let T 0 > 0 be the optimal time for the problem I, let u0 and y0 be an optimal control and
corresponding state, respectively. Then there exist a non-trivial vector g(x) ∈ H ′ so that the pair (u0, y0) is
the optimal for the following control problem with the fixed time T 0:

I(y, u) :=
⟨
g(x), z(x,T 0)

⟩
→ min, (10)

subject to the constraints (5)-(7), where ⟨⟩ denotes the duality betweenH , H ′.

Proof. The linearity of the equations (5) and the linearity of D implies that the endpoints z(x,T 0) of all
admissible states y form a convex set HT 0 . From Lemma 4.1 we have

HT 0 ∩ int K = ∅ and z(x,T 0) ∈ ∂K.

Since int K , ∅ thus there exists a closed hyperplane separatingHT 0 and K containing z(x,T 0) , i.e. there
is a nonzero vector g ∈ H ′ such as[12]

sup
z∈HT0

⟨
g(x), z(x,T 0)

⟩
≤

⟨
g(x), z0(x,T 0)

⟩
≤ inf

z∈K
⟨g(x), z⟩ .

This completes the proof.

Remarks: The method fails if int K , ∅ , e.g., in the case when K consists of a single point.

Remarks: If the set K has a special form i.e

K = {z ∈ H ; ∥z − zd∥H ≤ ϵ} ,

where ϵ > 0 and zd ∈ H are given, then g is Known explicitly and is expressed by

g(x) = z0(x,T 0) − zd.
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According to Lemma 4.2, problem I is equivalent to the one with the fixed time T 0 and the performance
index in the form (10).

Let us denote by Q1,Q2,Q3 the sets in the space E = Y × U as follows

Q1 :=


(y, u) ∈ E;

∂2yi

∂t2 + (A(t)y)i = ui in S ,

yi(x, 0) = yi,0(x) in G,

y′i(x, 0) = yi,1(x) in G,

Dωyi = 0, ω = 0, 1, . . . , ℓ − 1 on Σ,


(11)

Q2 :=
{
(y, u) ∈ E; y ∈ Y, u ∈ Uad

}
, (12)

Q3 :=
{
(y, u) ∈ E; z(x,T 0) ∈ K, u ∈ Uad

}
. (13)

Thus the optimization problem I may be formulated in such a form

I(y, u)→ min subject to (y, u) ∈ Q1 ∩ Q2 ∩ Q3. (14)

We approximate the sets Q1 and Q2 by the regular tangent cones (RTC),Q3 by the regular admissible
cone (RAC)and the performance functional by the regular cone of decrease (RFC).

The tangent cone to the set Q1 at (y0, u0) has the form

TC(Q1, (y0, u0)) =
{

(ȳ, ū) ∈ E : P′(z0, u0)(ȳ, ū) = 0
}

=


(ȳ, ū) ∈ E;

∂2yi

∂t2 + (A(t)y)i = ui in S ,

yi(x, 0) = yi,0(x) in G,

y′i(x, 0) = yi,1(x) in G,

Dωyi = 0, ω = 0, 1, . . . , ℓ − 1 on Σ,


(15)

where P′(y0, u0)(ȳ, ū) is the Fréchet differential of the operator

P
(
(y, y′), u

)
:=

(
∂2y
∂t2 + A(t)y − u, y(x, 0) − y0(x), y′(x, 0) − y1(x)

)
,

mapping from the space E in to the space F where

F = L2(0,T ; (W−ℓ0 (G, dρ))n) × (Wℓ
0(G, dρ))n × (L2(G, dρ))n.

According to Theorem3.2 on the existence of solution to the equation (5) it is easy to prove that P′(y0, u0)
is the mapping from the space Eon to the space F as required in the Lusternik Theorem (Theorem 9.1 in
[13]).

According to (12) the tangent cone RTC(Q2, (y0, u0)) to the set Q2 at (y0, u0))) has the form

RTC(Q2, (y0, u0)) = Y × RTC(Uad, u0), (16)

where RTC(Uad, u0) is the tangent cone to the set Uad at the point u0. From [14] it is known that tangent
cones are closed.
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Applying the same arguments as in Section 2.2 from [1] we can show that

RTC(Q1 ∩ Q2, (z0, u0)) = RTC(Q1, (z0, u0)) ∩ RTC(Q2, (z0, u0)).

We have to use Theorem 1.2 (Theorem 3.3 from [2]),to show that
[
RTC(Q1(y0, u0))

]∗
and [RTC(Q2,

(y0, u0))
]∗

are of the same sense. Note that we do not need to determine the explicit form of [RTC(Q1, (y0, u0)
)]∗ in order to derive this conclusion. It is enough to use the Theorem 3.2 about the existence and unique-
ness of the solution for hyperbolic system (5)which determine RTC(Q1, (y0, u0)) in (15). According to this
theorem the solution of such a system depends continuously on the right side ; i.e., in our case on ū so we
can rewrite the cone given by (15) in the form

RTC(Q1, (y0, u0)) = {(ȳ, ū) ∈ Y × U : ȳ = Mū} , (17)

where M : U → Y is a linear and continuous operator. Then, applying Theorem 1.2 (Theorem 3.3 from [2])
to the cones given by (16) and (17), we get the assumption (iv) of Theorem 1.1 is satisfied.

The admissible cone RAC(Q3, (y0, u0)) to the set Q3 at (y0, u0) has the form

RAC(Q3, (y0, u0)) = RAC(K, y0(T 0)) × U, (18)

where, RAC(K, y0(T 0)), is the admissible cone to the set K at the point y0(x, T 0) .

Using Theorem 7.5 in Ref. [13], the regular cone of decrease for the performance functional I is given
by

RFC(I, (y0, u0)) =
{

(ȳ, ū) ∈ E; I′(y0, u0)(ȳ, ū) < 0
}
, (19)

where I′(y0, u0)(ȳ, ū) is the fréchet differential of the performance functionalI.

If RFC(I, (y0, u0)) , ∅ then the adjoint cone consists of the elements of the form (Theorem 10.2 in [13])

f0((y0, u0)) = −λ0I′(y0, u0)(ȳ, ū), where λ0 ≥ 0,

The functionals belonging to [RTC(Q1, (y0, u0))]∗ have the form (Theorem 10.1 in [13])

f2(ȳ, ū) = 0 ∀(ȳ, ū) ∈ RTC(Q1, (y0, u0)).

The functionals

f3(ȳ, ū) ∈ [RTC(Q2, (y0, u0)))]∗ and f1(ȳ, ū) ∈ [RAC(Q3, (y0, u0)))]∗,

can be expressed as follows

f3(ȳ, ū) = f 1
3 (ȳ) + f 2

3 (ū), f1(ȳ, ū) = f 1
1 (ȳ) + f 2

1 (ū),

where f 1
3 (ȳ) = 0 ∀ȳ ∈ Y and f 2

1 (ū) = 0 ∀ū ∈ U (Theorem 10.1 in [13]), f 2
3 (ū) is the support

functional to the set Uad at the point u0 and, f 1
1 (ȳ) is the support functional to the set K at the point

y0(x,T 0) (Theorem 10.5 in [13]).

Since all assumptions of Theorem 1.1 (the generalized Dubovitskii-Milyutin Theorem, Theorem 1.8.1
in [1]) are satisfied and we know suitable adjoint cones then we ready to write down the Euler-Lagrange
Equation in the following form.

f 2
3 (ū) + f 1

1 (ȳ) = λ0I′(y0, u0)(ȳ, ū) ∀(ȳ, ū) ∈ RTC(Q1, (y0, u0)). (20)

Since I depended on the observation z which depended on the operator D, we shall interpret (20) after
choosing the observationz,the observation spaceH and the target set K in a less form fashions.
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5. OBSERVATION ON THE POSITION Y

Let
z(x, T ) = y(x,T ), H = (L2(G, dρ))n

K =
{
z = (zi)n

i=1 ∈ (L2(G, dρ))n : ∥zi − zid∥L2(G,dρ) ≤ ϵ
}
,

 (21)

where zid and ϵ are given such that zid ∈ L2(G, dρ), i = 1, 2, . . . n ϵ > 0.

Notation 2 We will call the problem I with z, H and K are given by (21), problem I1 .

In the present case, according to Remark 4.,

I′(y0, u0)(ȳ, ū) =
n∑

i=1

∫
G

(y0
i (x,T 0) − zid)ȳi(x,T 0)dρ. (22)

Introducing the adjoint variable p by the solution of the following systems

∂2 pi

∂t2 + (A(t)p)i = 0 , x ∈ G, t ∈]0,T 0[,

pi(x,T 0) = 0, x ∈ G,

p′i(x,T 0) = −(y0
i (x,T 0) − zid), x ∈ G,

Dωpi = 0, ω = 0, 1, . . . , ℓ − 1 x ∈ Γ, t ∈]0,T 0[.


(23)

The existence of a unique solution for the equation (23) can be proved using Theorem3.2 with an obvious
change of variables.

Taking into account that ȳ is the solution of P′((y0, u0))(ȳ, ū) = 0 for any fixed ū,we obtain.

0 =
∫ T 0

0

∫
G

[
∂2 pi

∂t2 + (A(t)p)i

]
ȳidρdt

= −
∫

G

∂pi

∂t
ȳi

∣∣∣∣T 0

0
dρ +

∫
G

pi.
∂ȳi

∂t

∣∣∣∣T 0

0
dρ −

∫ T 0

0

∫
G

pi.

[
∂2ȳi

∂t2 + (A(t)ȳ)i

]
dρdt

= −
∫

G

∂pi

∂t
(x,T 0).ȳi(x,T 0)dρ −

∫ T 0

0

∫
G

pi. ūidρdt.

Hence ∫
G

(yi(x,T 0) − zid).ȳi(x,T 0)dρ =
∫ T 0

0

∫
G

pi ūidρdt. (24)

So, the Euler-Lagrange Equation (20) takes the form:

f 2
3 (ū) + f 1

1 (ȳ) =
1
2
λ0

n∑
i=1

∫ T 0

0

∫
G

pi ūidρdt +
1
2
λ0

n∑
i=1

∫
G

(y0
i (x,T 0) − zid)ȳi(x,T 0)dρ. (25)

A number λ0 cannot be equal to 0 because in such a case all functionals in the Euler-Lagrange Equation
would be zero which is impossible according to the DM Theorem. Using the definition of the support
functional and dividing both members of the obtained inequalities by λ0 from (25) we obtain the maximum
conditions:

n∑
i=1

∫ T 0

0

∫
G

pi(ui − ui
0)dρ dt ≥ 0 ∀u ∈ Uad, (26)
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n∑
i=1

∫
G

(y0
i (x,T 0) − zid).(yi − yi

0)dρ ≥ 0 ∀y ∈ K. (27)

.

If RFC(I1, (y0,u0)) = ∅ then the optimality conditions are fulfilled with equality in the maximum
conditions (26)-(27).

We have thus proved:

Theorem 5.1 Assuming that T 0 > 0 is the optimal time for the problem I1, u0 and y0 are the opti-
mal control and corresponding state respectively. Then, their exists the adjoint state p, p = (pi)n

i=1 ∈{
p : p ∈ L2(0, T ; (Wℓ

0(G, dρ))n), ∂p
∂t ∈ (L2(S ))n

}
so that the following system of equations and inequali-

ties must be satisfied:

State equations

∂2yi
0

∂t2 +
(
A(t)y0

)
i
= ui

0, x ∈ G, t ∈]0,T 0[,

yi
0(x, 0) = yi,0(x), x ∈ G,

y′i
0(x, 0) = yi,1(x), x ∈ G,

Dωy0
i = 0, ω = 0, 1, . . . , ℓ − 1 x ∈ Γ, t ∈]0,T 0[

y(x,T ) ∈ K.


(28)

Adjoint equations

∂2 pi

∂t2 + (A(t)p)i = 0 , x ∈ G, t ∈]0,T 0[,

pi(x,T 0) = 0, x ∈ G,

p′i(x,T 0) = −(y0
i (x,T 0) − zid), x ∈ G,

Dωpi = 0, ω = 0, 1, . . . , ℓ − 1 x ∈ Γ, t ∈]0,T 0[.


(29)

Maximum conditions
n∑

i=1

∫ T 0

0

∫
G

pi(ui − ui
0)dρ dt ≥ 0 ∀u ∈ Uad, (30)

n∑
i=1

∫
G

(y0
i (x,T 0) − zid).(yi − yi

0)dρ ≥ 0 ∀y ∈ K. (31)

6. OBSERVATION ON THE VELOCITY Y ′

Let
z(x, T ) = y′(x,T ), H = (L2(G, dρ))n

K =
{
z = (zi)n

i=1 ∈ (L2(G, dρ))n : ∥zi − zid∥L2(G,dρ) ≤ ϵ
}
,

 (32)

where zid and ϵ are given such that zid ∈ L2(G, dρ), i = 1, 2, . . . n ϵ > 0.

Notation 3 We will call the problem I with z, H and K are given by (32), problem I2 .
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In the present case, according to Remark 4.,

I′(y0, u0)(ȳ, ū) =
n∑

i=1

∫
G

(y′0i (x,T 0) − zid)ȳ′i(x,T 0)dρ. (33)

Introducing the adjoint variable p by the solution of the following systems

∂2 pi

∂t2 + (A(t)p)i = 0, x ∈ G, t ∈]0,T 0[,

pi(x,T 0) = (y′0i (x,T 0) − zid), x ∈ G,

p′i(x, T 0) = 0 x ∈ G,

Dωpi = 0, ω = 0, 1, . . . , ℓ − 1 x ∈ Γ, t ∈]0,T 0[.


(34)

Since (y′i(τ
0; u0) − zid) < Wℓ

0(G, dρ),the existence of a unique solution for the problem (34) can not be
proved using Theorem3.2.

The existence of a unique solution p(u) for the problem (34) can be proved by applying Transposition
Theorem (Theorem 3.1, chapter 4 of Lions[4]) with

V =
(
Wℓ

0(G, dρ)
)n
, H = L2(G, dρ), V ′ =

(
W−ℓ0 (G, dρ)

)n
.

Then we have the following lemma

Lemma 6.1 The solution of (34), p(u) is defined as the unique element of (L2(S ))2 such that∫ T 0

0

∫
G

pi(u)
[
∂2ϕi

∂t2 + (A(t)ϕ)i

]
dρ(x)dt =

∫
G

(y′i(τ
0; u0) − zid)ϕ′idρ(x)

∀ϕ = (ϕi)n
i=1 such that

[
∂2ϕi

∂t2 + (A(t)ϕ)i

]
∈ L2(S ), ϕi(0) = 0, ϕ′i(0) = 0.

 (35)

Therefore, in (35) we can take ϕi = ȳi and taking into account that ȳ is the solution of P′((y0, u0))(ȳ, ū) = 0
for any fixed ū,we obtain. ∫

G
(y′i(x,T 0) − zid).ȳ′i(x, T 0)dρ =

∫ T 0

0

∫
G

pi ūidρdt. (36)

Hence, as the above section, we obtain the following theorem:

Theorem 6.2 Assuming that T 0 > 0 is the optimal time for the problem I2, u0 and y0 are the optimal
control and corresponding state respectively. Then, their exists the adjoint state p = (pi)n

i=1 ∈ (L2(S )) so
that the following system of equations and inequalities must be satisfied:

State equations

∂2yi
0

∂t2 +
(
A(t)y0

)
i
= ui

0, x ∈ G, t ∈]0,T 0[,

yi
0(x, 0) = yi,0(x), x ∈ G,

y′i
0(x, 0) = yi,1(x), x ∈ G,

Dωy0
i = 0, ω = 0, 1, . . . , ℓ − 1 x ∈ Γ, t ∈]0,T 0[

y(x,T ) ∈ K.


(37)
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Adjoint equations

∂2 pi

∂t2 + (A(t)p)i = 0, x ∈ G, t ∈]0,T 0[,

pi(x,T 0) = (y′0i (x,T 0) − zid), x ∈ G,

p′i(x,T 0) = 0 x ∈ G,

Dωpi = 0, ω = 0, 1, . . . , ℓ − 1 x ∈ Γ, t ∈]0,T 0[.


(38)

Maximum conditions
n∑

i=1

∫ T 0

0

∫
G

pi(ui − ui
0)dρ dt ≥ 0 ∀u ∈ Uad, (39)

n∑
i=1

∫
G

((y0
i )′(x, T 0) − zid).(y′i − (yi

0)′)dρ ≥ 0 ∀y ∈ K. (40)

7. OBSERVATION ON THE POSITION-VELOCITY (Y, Y ′)

We now consider the optimal control problem with position-velocity observation. Let

z(t) =
(
y(t), y′(t)

)
, H =

(
Wℓ

0(G, dρ)
)n × (L2(G, dρ))n

K =

(z, z′) ∈ H :
∑
α≤ℓ
∥Dαzi − zid∥L2(G,dρ) + ∥z′i − zid∥L2(G,dρ) ≤ ϵ

 ,
 (41)

where zid and ϵ are given such that zid ∈ L2(G, dρ) , i = 1, 2, . . . n, ϵ > 0.

Notation 4 We will call the problem I with z, H and K are given by (41), problem I3 .

From the definition of the usual norm on (Wℓ
0(G, dρ))n × (L2(G, dρ))n, definition of K in (41), and

Theorem 2 in [8], I′(y0, u0)(ȳ, ū) can be given by the following equation:

I′(y0, u0)(ȳ, ū) =
n∑

i=1

∫
G
−

∑
α≤ℓ

∞∑
k=1

(−1)ℓD2ℓ
k

 (yi(τ0; u0) − zid)ȳi(x, T 0)dρ

+

n∑
i=1

∫
G

(y′0i (x,T 0) − zid)ȳ′i(x,T 0)dρ,

(42)

which can be interpreted as the above application to obtaining the following theorem

Theorem 7.1 Assuming that T 0 > 0 is the optimal time for the problem I3, u0 and y0 are the optimal
control and corresponding state respectively. Then, their exists the adjoint state p = (pi)n

i=1 ∈ (L2(S )) so
that the following system of equations and inequalities must be satisfied:

State equations

∂2yi
0

∂t2 +
(
A(t)y0

)
i
= ui

0, x ∈ G, t ∈]0,T 0[,

yi
0(x, 0) = yi,0(x), x ∈ G,

y′i
0(x, 0) = yi,1(x), x ∈ G,

Dωy0
i = 0, ω = 0, 1, . . . , ℓ − 1 x ∈ Γ, t ∈]0,T 0[

y(x,T ) ∈ K.


(43)
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Adjoint equations

∂2 pi

∂t2 + (A(t)p)i = 0, x ∈ G, t ∈]0,T 0[,

pi(x,T 0) = (y′0i (x,T 0) − zid), x ∈ G,

p′i(x,T 0) = −
∑
α≤ℓ

∞∑
k=1

(−1)ℓD2ℓ
k

 (yi(τ0; u0) − zid) x ∈ G,

Dωpi = 0, ω = 0, 1, . . . , ℓ − 1 x ∈ Γ, t ∈]0,T 0[.


(44)

Maximum conditions
n∑

i=1

∫ T 0

0

∫
G

pi(ui − ui
0)dρ dt ≥ 0 ∀u ∈ Uad, (45)

n∑
i=1

∫
G

∑
α≤ℓ

∞∑
k=1

(−1)ℓD2ℓ
kρ

 ((y0
i )′(x,T 0) − zid)(y′i − (yi

0)′)dρ ≥ 0 ∀y ∈ K. (46)

.

8. SCALER CASE

Here, we take the case where n = 2, in the case of section 5. the time optimal control is characterized b y

State equations

∂2y0
1

∂t2 +

∑
α≤ℓ

∞∑
k=1

(−1)αD2α
k

 y0
1 + a1(x, t)y0

1 − a12(x, t)y0
2 = u0

1 x ∈ G, t ∈]0,T 0[,

∂2y0
2

∂t2 +

∑
α≤ℓ

∞∑
k=1

(−1)αD2α
k

 y0
2 − a21(x, t)y0

1 + a2(x, t)y0
2 = u0

2 x ∈ G, t ∈]0,T 0[,

y0
1(x, 0) = y1,0(x), y0

2(x, 0) = y2,0(x) x ∈ G,

y′01 (x, 0) = y1,1(x), y′01 (x, 0) = y2,1(x) x ∈ G,

Dωy0
1 = Dωy0

2 = 0, ω = 0, 1, . . . , ℓ − 1 x ∈ Γ, t ∈]0,T 0[,

∥y0
1(T 0, u0) − z1d∥ ≤ ϵ, ∥y0

2(T 0, u0) − z2d∥ ≤ ϵ



(47)

Adjoint equations

∂2 p1

∂t2 +

∑
α≤ℓ

∞∑
k=1

(−1)αD2α
ρk

 p1 + a1(x, t)p1 − a21(x, t)p2 = 0 x ∈ G, t ∈]0,T 0[,

∂2 p2

∂t2 +

∑
α≤ℓ

∞∑
k=1

(−1)αD2α
ρk

 p2 − a12(x, t)p1 + a2(x, t)p2 = 0 x ∈ G, t ∈]0,T 0[,

p1(x,T 0) = 0, p2(x,T 0) = 0 x ∈ G,
∂p1

∂t
(T 0; u0) = −(y1(T 0; u0) − z1d) x ∈ G,

∂p2

∂t
(T 0; u0) = −(y2(T 0; u0) − z2d) x ∈ G,

Dωp1 = Dωp2 = 0, ω = 0, 1, . . . , ℓ − 1 x ∈ Γ, t ∈]0,T 0[.



(48)
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Maximum conditions

2∑
i=1

∫ T 0

0

∫
G

pi(ui − ui
0)dρ dt ≥ 0 ∀u ∈ Uad, (49)

2∑
i=1

∫
G

(y0
i (x,T 0) − zid)(yi − yi

0)dρ ≥ 0 ∀yi : ∥yi − zid∥ ≤ ϵ. (50)

9. COMMENTS

• We would like to note that, if ℓ = 1 and the sequence of weights (Pk)∞k=1 is given by

(Pk)∞k=1 = (1, 1, . . . , 1︸      ︷︷      ︸
N−time

, 0, 0, . . . ),

then

A(t) =
(
−∆ + a1 −a12

−a21 −∆ + a2

)
,

where ∆ is the Laplace operator: ∆ =
∑N

k=1
∂2

∂x2
k
.

The results in this case are similar to the results in [8].

• As a final remark,we note that if there is no constraint in the states i.e for example if we take

Y =
{
y = (yi)n

i=1 ∈ L2(0,T ; (Wℓ
0(G, dρ))n) × (L2(S ))n : (yi(x,T ) − zid) ≤ ϵ

}
,

in the case of Section 5. the problem is equivalent to the fixed-time problem

minimize
n∑

i=1

∫
G
|yi(x,T ) − zid(x)|2dρ, T fixed ,

subject to (5)-(7) [except in the trivial case where zd = y(x,T ) ] Then we can prove in an analogous
manner, that is the necessary conditions for optimality for this problem coincide with the results in
[8].
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