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Positive Solutions for a Class of Quasilinear Elliptic
Equations with a Dirichlet Problem

Yanfang CHENG1

Zuodong YANG1,2,∗

Abstract: In this paper, we study the following problem

−△pu = h(x)uq + f (u), u ∈ W1,p
0 (Ω), u > 0 in Ω,

where Ω is a bounded smooth domain in RN(N ≥ 3), 0 < q < 1. By using Mountain Pass
Theorem, we prove that there exists at least two positive solutions under suitable assumptions on
the nonlinearity.
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1. INTRODUCTION

In this paper, we study the following Dirichlet problem:
−∆pu = h(x)uq + f (u),

u ∈ W1,p
0 (Ω),

u > 0 in Ω,

(1)

where △pu = div(|∇u|p−2∇u) is the p-Laplacian operator, 1 < p < ∞, and Ω is a bounded smooth domain
in RN , p∗ = N p

N−p if N > p, p∗ = ∞ if N ≤ p, 0 < q < p − 1 and h(x), f (s) satisfy the following conditions:
(h1) h(x) ∈ L∞(Ω), h(x) ≥ 0 and h(x) , 0,
(f1) f (s) ∈ C(R); f (0) = 0; f (s) ≥ (,)0 if s ≥ 0 and f (s) ≡ 0 if s ≤ 0,
(f2) lims→0+

f (s)
sp−1 = 0; lims→+∞

f (s)
sp−1 = l > 0,

(f3) f (s)
sp−1 is non-decreasing in s > 0,

(f4) There exists a constant M > 0 such that f (s)s − pF(s) ≤ M for all s ≥ 0.
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For p = 2, the following problem 
−∆u = h(x)uq + f (u),

u ∈ W1,p
0 (Ω),

u > 0 in Ω,

(2)

has been studied extensively under various conditions, for example, if f (u) = 0 and 0 < q < 1 (i.e. the
sublinear case, in which I(u) is coercive ), see e.g., the papers [3, 4]. If h(x) ≡ λ1 and q = 1, l = 0, problem
(2) is the so-called resonant problem; the related results can be found in [5, 6], etc. If q ≥ 1 and f (s) is
superlinear in s, the typical results were given in [1, 7–9]. A similar problem to (2) with h(x) ≡ 0 and f (x)
being asymptotically linear at infinity was studied by [10–13], etc. For the case of 0 < q < 1 and f (x) being
superliner in s, some existence and multiplicity results to problem (2) on a bounded domain were given in
[14].

For p > 1, the existence and uniqueness of the positive solutions for the quasilinear elliptic equation
with eigenvalue problems {

△pu + λ f (u) = 0 in Ω,
u(x) = 0 on ∂Ω,

(3)

with λ > 0, p > 1,Ω ⊂ RN,N ≥ 2 have been studied by many authors, see [21–28] and the references
therein. When f is strictly increasing on R+, f (0) = 0, lims→0+ f (s)/sp−1 = 0 and f (s) ≤ α1 +α2sµ, 0 < µ <
p − 1, α1, α2 > 0, it was shown in [23] that there exists at least two positive solutions for Eqs. (3) when λ is
sufficiently large. If lims→0+ inf f (s)/sp−1 > 0, f (0) = 0 and the monotonicity hypothesis ( f (s)/sp−1)′ < 0
holds for all s > 0, it was proved in [24] that the problem (3) has a unique positive solution when λ is
sufficiently large. Moreover, it was also shown in [25] that problem (3) has a unique positive large solution
and at least one positive small solution when λ is large if f is nondecreasing; there exists α1, α2 > 0 such
that f (s) ≤ α1 + α2sβ, 0 < β < p − 1; lims→0+

f (s)
sp−1 = 0, and there exists T, Y > 0 with Y ≥ T such that

( f (s)/sp−1)′ > 0 for s ∈ (0,T ),

and
( f (s)/sp−1)′ < 0 for s > Y.

Recently, Hai[26] considered the case when Ω is an annular domain, and obtained the existence of positive
large solutions for the problem (3) when λ sufficiently small. Xuan & Chen proved in [27] the singular
problem (3) has a unique positive radial solution if f is a continuous function and positive on Ω = BR (here
BR is a ball).

Moreover, it was also shown in [28] that problem

△pu + q(x)u−γ = 0, x ∈ RN ,

has a positive entire solution if q ∈ C(R+), 0 ≤ γ < p − 1, for any 0 < ε < (N − p)(p − 1 − |γ|)/(p − 1),∫ ∞
1

rp+ε−1+[(N−p)|γ|/(p−1)]q(r)dr < ∞,

and for r ∈ (0, 1), δ < 1, q(r) = O(r−δ).

Still in [29], the authors studied the existence of nontrivial solutions for the problem

−△pu + |u|p−2u = 0,
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in a bounded smooth domain Ω ⊂ RN with a nonlinear boundary condition by variational and topological
argument, and the authors in [30] obtained ground and bound state solution of quasilinear equation

−△pu + V(x)|u|p−2u = f (x, u),

with unbounded or decaying radial potential.

To the author’s knowledge, it seems that there are few results for problem (1). Motivated by the results of
the above cited papers, we study the existence of two positive solutions of problem (1) under the condition
( f 1) − ( f 4), the results of the semilinear equations are extended to the quasilinear ones. We modify the
methods developed in [1, 17, 20] and extend the results of [20] to a quasilinear elliptic equation (1).

Definition 1.1 u ∈ W1,p
0 is a positive weak solution to problem (1) if u > 0, a.e. on Ω and satisfies∫
Ω

|∇u|p−2∇u∇φdx =
∫
Ω

h(x)uqφdx +
∫
Ω

f (u)φdx, for all φ ∈ W1,p
0 (Ω).

Throughout this paper, we denote by λ1 > 0 the first eigenvalue of −∆p in W1,p
0 (Ω), that is:

λ1 = inf
0,u∈W1,p

0 (Ω)

∫
Ω
|∇u|pdx∫
Ω
|u|pdx

, (3)

Denote the norm of u ∈ W1,p
0 (Ω)(Lp(Ω), p ≥ 1, respectively) by

∥u∥ = (
∫
Ω

|∇u|pdx)
1
p , (|u|p = (

∫
Ω

|u|pdx)
1
p , respectively )

Define

F(t) =
∫ t

0
f (s)dx for t ≥ 0.

By (f1)-(f3), it is easy to see that F(t)
tp → 0 as t → 0 and F(t)

tp∗ → 0 as t → ∞ where p∗ = N p
N−p . Then, for

any ε > 0, there exists a positive constant Cε such that

F(s) ≤ εsp +Cεsp∗ , for all s ≥ 0. (4)

It is well known that to seek a nontrivial weak solution for (1) is equivalent to finding a nonzero critical
point of the following variational functional

I(u) =
1
p

∫
Ω

|∇u|pdx − 1
q + 1

∫
Ω

h(x)(u+)q+1dx −
∫
Ω

F(u+)dx, (5)

for u ∈ W1,p
0 (Ω), where u+ = max{0, u}, u− = min{0, u}. By (f1)-(f3), I(u) is well defined and in C1(W1,p

0 (Ω)).
Moreover, by the maximum principle for weak solution[2], we know that a nonzero critical point of I(u) is
in fact a positive weak solution to problem (1).

We end this section by giving our main theorem. Before this, we give a further condition on h(x).
For any fixed τ ∈ (0, 1

p ) (as small as we want). Let ε = λ1τ in (4). Then there is a fixed constant
Cτ(λ1) > 0 such that

F(s) ≤ λ1τsp +Cτsp∗ , for all s ≥ 0. (6)
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For the above τ and Cτ, we suppose that |h|∞ satisfies:

(h2) |h|
p∗−p
ν
∞ <

( 1
p − τ)βα

p−q−1
ν

1 + (q + 1)αCτ
,

where
ν = p∗ − q − 1, α =

(p − q − 1)(N − p)
p2(1 + q)Cτ

, β =
(q + 1)S p

|Ω| pN
.

where |Ω| denotes the measure of the domain Ω, S is the best Sobolev constant, that is,

S p = inf
0,u∈W1,p

0 (Ω)

∫
Ω
|∇u|pdx

(
∫
Ω
|u|p∗dx)

p
p∗
. (7)

We modify the methods developed in [20], which give the following theorems

Theorem 1.2 If (h1), (h2), (f1)-(f4) hold and l > λ1, then problem (1) has two positive weak solutions u1
and u2 in W1,p

0 (Ω) such that

I(u1) < 0 < I(u2).

Remarks: By the proof of Theorem 3.1 (see Section 3), we know that if (h1), (h2) and (f1), (f2) hold, then
for all l > 0 (even if l ≤ λ1), problem (1) has also a positive weak solution u1 ∈ W1,p

0 (Ω) with I(u1) < 0.

2. PRELIMINARIES

Let,s first recall the Mountain Pass Theorem and Ekeland, variational principle which will be used to prove
Theorem 1.2.

Proposition 2.1 (Mountain Pass Theorem[18]) Let E be a real Banach space with its dual space E∗ and
suppose that I ∈ C(E,R) satisfies the condition

max{I(0), I(e)} ≤ µ < η ≤ inf
∥u∥=ρ

I(u),

for some µ < η, ρ > 0 and e ∈ E with ∥e∥ > ρ. Let c ≥ η be characteriaed by

c = inf
γ∈Γ

max
0≤τ≤1

I(γ(τ)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of continuous paths joining 0 and e. Then, there
exists a sequence {un} ⊂ E such that

I(un)→ c ≥ η and (1 + ∥un∥)∥I′(un)∥E∗ → 0(n→ ∞).

Proposition 2.2 (Ekeland, variational principle, see [16]) Let V be a complete metric space and F : V →
R ∪ {+∞} be lower semi-continuous, bounded from below. For any ε > 0, there is some point υ ∈ V with

F(υ) ≤ inf
V
+ε and ∀ω ∈ V, F(ω) ≥ F(υ) − εd(υ, ω).
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Lemma 2.3 For I defined by (6), if (f1), (f3), (f4) hold and there exists {un} ⊂ W1,p
0 (Ω) satisfying

⟨I′(un), un⟩ → 0(n→ ∞),

then, for any t > 0, by extracting a suitable subsequence, we have

I(tun) ≤ tp

pn
+ [

tp

p
− tq+1

1 + q
]
∫
Ω

h(x)(u+n )1+qdx +
1
p

M|Ω|.

Proof. The main idea of proving this lemma is essentially due to [18, 20], so we omit it here.

Lemma 2.4 If (h1), (h2) and (f1), (f2) hold, then

(i) There exists η > 0, ρ > 0 such that I(u) ≥ η > 0, for all u ∈ W1,p
0 (Ω) with ∥u∥ = ρ.

(ii) There exists e ∈ W1,p
0 (Ω) with ∥e∥ > ρ such that I(e) < 0.

Proof. (i) By the definition of I given in (6), applying (7) and (4) as well as Sobolev inequality (8), we have

I(u) ≥ 1
p
∥un∥p −

|h|∞
1 + q

∫
Ω

(u+n )1+qdx − τλ1

∫
Ω

(u+n )pdx −Cτ

∫
Ω

(u+n )p∗dx

≥ (
1
p
− τ)∥un∥p −

|h|∞
1 + q

(
∫
Ω

(u+n )p∗dx)
1+q
p∗ |Ω|

ν
p∗ −CτS −p∗∥un∥p

∗

≥ [(
1
p
− τ) − |h|∞|Ω|

ν
p∗

(1 + q)S 1+q ∥un∥q+1−p −CτS −p∗∥un∥p
∗−p]∥un∥p,

where ν is given by (h2). Motivated by [15], we let

Q(t) =
|h|∞|Ω|

ν
p∗

(1 + q)S 1+q tq+1−p +CτS −p∗ tp∗−p.

So, to prove (i) it suffices to show that there exists t0 > 0 such that

Q(t0) <
1
p
− τ. (8)

In fact,

Q′(t) =
(q + 1 − p)|h|∞|Ω|

ν
p∗

(1 + q)S 1+q tq−p +CτS −p∗(p∗ − p)tp∗−p−1,

then

Q′(t0) =
(q + 1 − p)|h|∞|Ω|

ν
p∗

(1 + q)S 1+q tq−p
0 +CτS −p∗ (p∗ − p)tp∗−p−1

0 = 0.

We have

tp∗−p−1
0 =

(p − q − 1)|h|∞|Ω|
ν

p∗ S p∗

(1 + q)S 1+q(p∗ − p)Cτ
.

Then

t0 = [
(p − q − 1)|h|∞S p∗−p−1

(1 + q)(p∗ − p)Cτ
]

1
ν |Ω|

1
p∗ (ν = p∗ − p − 1)
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= [
(p − q − 1)|h|∞

(1 + q)(p∗ − p)Cτ
]

1
ν S |Ω|

1
p∗

= [
(p − q − 1)(N − p)|h|∞

(1 + q)p2Cτ
]

1
ν S |Ω|

1
p∗ (p∗ = N p

N−p )

= (α|h|∞)
1
ν S |Ω|

1
p∗ (α = (p−q−1)(N−p)

p2(1+q)Cτ
) .

So

t0
S
= (α|h|∞)

1
ν |Ω|

1
p∗ .

Then

Q(t0) =
|h|∞|Ω|

ν
p∗ tq+1−p

0

(1 + q)S 1+q +
(p − q − 1)(N − p)|h|∞|Ω|

ν
p∗ tq+1−p

0

(1 + q)p2S 1+q

=
|h|∞|Ω|

ν
p∗ tq+1−p

0

(1 + q)S pS q+1−p +
(1 + q)αCτ|h|∞|Ω|

ν
p∗ tq+1−p

0

(1 + q)S pS q+1−p

=
|h|∞|Ω|

ν
p∗ tq+1−p

0

β|Ω| pN S q+1−p
+

(1 + q)αCτ|h|∞|Ω|
ν

p∗ tq+1−p
0

β|Ω| pN S q+1−p
(β = (q+1)S p

|Ω|
p
N

)

=
|h|∞|Ω|

p−q−1
p∗

β
[1 + (1 + q)αCτ](

t0
S

)q+1−p

=
|h|∞|Ω|

p−q−1
p∗

β
[1 + (1 + q)αCτ](α|h|∞)

q+1−p
ν |Ω|

q+1−p
p∗

=
|h|

p∗−p
ν
∞
β

[1 + (1 + q)αCτ]α
q+1−p
ν

<
( 1

p − τ)α
p−q−1
ν

1 + (1 + q)αCτ
[1 + (1 + q)αCτ]α

q+1−p
ν (by (h2))

=
1
p
− τ.

So (10) holds. But Q(t) → ∞ whenever t → 0+ or t → +∞, which means Q(t) has a minimum at t = t0.
Substituting t0 in Q(t) and noticing the condition (h2), we see that (10) holds. Taking ρ = t0, then there
exists η > 0 such that (i) holds.

(ii) Let φ1 be the λ1−eigenfunction, that is, φ1 achieves the infimum of (11). For t > 0,

lim
t→∞

I(tφ1)
tp =

1
p
∥φ1∥p − lim

t→∞

tq+1−p

q + 1

∫
Ω

h(x)φq+1
1 dx − lim

t→∞

∫
Ω

F(tφ1)
tp dx

≤ 1
p
∥φ1∥p −

∫
Ω

lim
t→∞

inf
F(tφ1)
tpφ

p
1

φ
p
1dx (by Fatou,s lemma)

≤ 1
p
∥φ1∥p −

l
p

∫
Ω

φ
p
1dx (by (f2))

=
1
p

(1 − l
λ1

)∥φ1∥p

< 0 (by l > λ1) .

So, for t0 > 0 large enough, choosing e = t0φ1, then (ii) is proved.
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Lemma 2.5 If {un} ⊂ W1,p
0 (Ω) is bounded and

I(un)→ c, I′(un)→ 0, in W−1,p∗

0 (Ω),

then, there exists a subsequence, still denoted by {un}, such that for some u ∈ W1,p
0 (Ω), un → u strongly in

W1,p
0 (Ω) and I(u) = c.

The proof of the Lemma 2.5 is similar to the Lemma 2.5 of [20], so we omit it here.

3. EXISTENCE OF THE FIRST SOLUTION

For ρ given in Lemma 2.4, we set

Bρ = {u ∈ W1,p
0 (Ω) : ∥u∥ ≤ ρ} and ∂Bρ = {u ∈ W1,p

0 (Ω) : ∥u∥ = ρ},

andBρ is a complete metric space with the distance

dist(u, v) = ∥u − v∥, foy any u, v ∈ Bρ.

By Proposition 2.2, we have

I(u) |∂Bρ≥ η > 0. (9)

Moreover, it is easy to see that I ∈ C1(Bρ,R), hence I is lower semi-continuous and bounded from below
on Bρ. Let

c1 = inf{I(u) : u ∈ Bρ}. (10)

Taking v ∈ C∞0 (∞), v ≥ 0 with
∫
Ω

h(x)v(x)q+1dx > 0, and for t > 0, we have

I(tv) =
tp

p

∫
Ω

|∇v|pdx − tq+1

1 + q

∫
Ω

h(x)v1+qdx −
∫
Ω

F(tv)dx

≤ tp

p

∫
Ω

|∇v|pdx − tq+1

1 + q

∫
Ω

h(x)v1+qdx

< 0 for t > 0 small enough

Therefore, c1 < 0.

Theorem 3.1 If (h1), (h2) and (f1), (f2) hold, then there exists u1 ∈ W1,p
0 (Ω) which is a weak solution of

problem (1) and I(u1) = c1 < 0, c1 being given by (12).

Proof. By Proposition 2.2, for any k ≥ 1 there is a uk with

c1 ≤ I(uk) ≤ c1 +
1
k
, (11)

I(w) ≥ I(uk) − 1
k
∥uk − w∥. (12)
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Then, ∥uk∥ < ρ for k ≥ 1 large enough. Otherwise, if ∥uk∥ = ρ for infinitely many k, without loss of
generality, we may assume that ∥uk∥ = ρ for all k ≥ 1, and it follows from (11) that

I(uk) ≥ η > 0.

This and (13) imply that 0 > c1 ≥ η > 0 by letting k → ∞, a contradiction.
We prove now that I′(uk) → 0 in W−1,p∗

0 (Ω). In fact, for any u ∈ W1,p
0 (Ω) with ∥u∥ = 1, let wk = uk + tu

and for a fixed k ≥ 1, we have ∥wk∥ ≤ ∥uk∥ + t < ρ if t > 0 small enough. So, it follows from (14) that

I(uk + tu) ≥ I(uk) − t
k
∥u∥,

that is

I(uk + tu) − I(uk)
t

≥ −1
k
∥u∥ = −1

k
.

Letting t → 0, we see that ⟨I′(uk, u⟩ ≥ − 1
k , and this gives

|⟨I′(uk), u⟩| < 1
k
, for any u ∈ W1,p

0 (Ω) with ∥u∥ = 1.

So, I′(uk) → 0 in W−1,p∗

0 (Ω) and by (13), I(uk) → c1 < 0. Hence, it follows from Lemma 2.5 that there
exists u1 ∈ W1,p

0 (Ω) such that I′(u1) = 0, that is, u1 is a weak solution of problem (1) and I(u1) = c1 < 0.
Moreover, the maximum principle implies that u1 > 0 a.e. in Ω.

4. PROOF OF THEOREM 1.2

By Theorem 3.1, to prove Theorem 1.2, we need only to show that there exists another nonzero critical
point of I in W1,p

0 (Ω). For this purpose, we use Proposition 2.1.
For η, ρ and e given in Lemma 2.4, by applying Proposition 2.1 with µ = 0, E = W1,p

0 (Ω) and for c
defined as in Proposition 2.1, there exists a sequence {un} ⊂ W1,p

0 (Ω) such that

I(un)→ c > 0; (1 + ∥un∥)∥I′(un)∥E∗ → 0.

This implies that

I(un) =
1
p

∫
Ω

|∇un|pdx − 1
q + 1

∫
Ω

h(x)(u+n )q+1dx −
∫
Ω

F(u+n )dx = c + o(1), (13)

⟨I′(un), φ⟩ =
∫
Ω

|∇un|p−2∇un∇φdx −
∫
Ω

h(x)(u+n )qφdx −
∫
Ω

f (u+n )φdx = o(1), (14)

⟨I′(un), un⟩ =
∫
Ω

|∇un|pdx −
∫
Ω

h(x)(u+n )q+1dx −
∫
Ω

f (u+n )un.dx = o(1). (15)

Proof. By Lemma 2.5, if {un} is bounded in W1,p
0 (Ω), then we can find some u2 ∈ W1,p

0 (Ω) such that
I′(u2) = 0 and I(u2) = c > 0 and u2 is also a solution of problem (1), which is positive (by the maximum
principle[2]) and different from the solution u1 obtained in Theorem 3.1 since I(u1) = c1 < 0.

Therefore, to prove Theorem 1.2, it is enough to show that {un} satisfying (15)-(17) is bounded in
W1,p

0 (Ω)

152



Yanfang CHENG; Zuodong YANG/Studies in Mathematical Sciences Vol.2 No.1, 2011

Indeed, if ∥un∥ → ∞, for M > 0 given by (f4), we set

tn =
p
√

pM|Ω|
∥un∥

; wn = tnun =

p
√

pM|Ω|
∥un∥

un. (16)

Obviously, wn is bounded in W1,p
0 (Ω). By extracting a subsequence and we may suppose that

wn → w weakly in W1,p
0 (Ω), (17)

wn → w a.e. in Ω, (18)

wn → w strongly in Lr(Ω), 1 ≤ r < p∗ =
N p

N − p
. (19)

We claim that

w , 0.

In fact, if w ≡ 0, then wn → 0 in Lp∗(Ω) and in Lq+1(Ω) by (21). Hence,

lim
n→∞

∫
Ω

h(x)(w+n )q+1dx = 0; lim
n→∞

∫
Ω

F(w+n )dx = 0,

and consequently,

I(wn) =
1
p
∥wn∥p − o(1) = M|Ω| − o(1) (by (4.4)) . (20)

Since ∥un∥ → ∞, noticing (18) we observe that tn → 0, then it follows from (18) and Lemma 2.3 that

I(wn) ≤ tp
n

pn
+ [

tp
n

p
− tq+1

n

1 + q
]
∫
Ω

h(x)(u+n )1+qdx +
1
p

M|Ω| → 1
p

M|Ω|,

which contradicts (22). Hence, w , 0.
Now, we turn to showing that w satisfies the following identity:

∫
Ω

|∇w|p−2∇w∇φdx = l
∫
Ω

|w|p−2wφdx for all φ ∈ W1,p
0 (Ω). (21)

In fact, by (16), (18) and noticing tn → 0, we have

∫
Ω

|∇wn|p−2∇wn∇φdx −
∫
Ω

pn(x)|wn|p−2wnφdx = o(1) for all φ ∈ W1,p
0 (Ω), (22)

where

pn(x) =


f (u+n (x))
up−1

n (x)
, for x ∈ Ω with un(x) ≥ 0,

0 for x ∈ Ω with un(x) ≤ 0.

By condition (f1)-(f3), we know that

0 ≤ pn(x) ≤ l, for a.e. x ∈ Ω.

153



Yanfang CHENG; Zuodong YANG/Studies in Mathematical Sciences Vol.2 No.1, 2011

Passing to a suitable subsequence we may suppose that there is a function g(x) ∈ Lp∗(Ω) such that

pn(x)⇀ g(x) weakly in Lp∗(Ω),
0 ≤ g(x) ≤ l a.e. in Ω.

Since ∥un∥ → ∞ and wn → w a.e. in Ω, it follows from (18) that un → ∞ a.e. in Ω if w(x) > 0 a.e. on
Ω; then (f2) implies that

g(x) ≡ l if w(x) > 0 for a.e. x ∈ Ω. (23)

For any φ ∈ Lp∗(Ω), it follows from wn → w strongly in Lp∗(Ω) that

∫
Ω

pn(x)|wn(x)|p−2wn(x)φdx =

∫
Ω

pn(x)|w+n (x)|p−2w+n (x)φdx,

→
∫
Ω

g(x)|w+(x)|p−2w+(x)φdx.

Then, by (19), (24), we have

∫
Ω

|∇w|p−2∇w∇φdx −
∫
Ω

g(x)|w+|p−2w+φdx = 0 for all φ ∈ W1,p
0 (Ω).

Taking φ = w−, this yields ∥w−∥ = 0 and so we have that w ≡ w+ ≥ 0 on Ω; then the maximum principle
implies that w(x) > 0 on Ω. Thus, by (25) we have g(x) ≡ l and (23) holds. So if we take φ = φ1 (the
λ1-eigenfunction) in (23), we have

∫
Ω

|∇w|p−2∇w∇φ1dx = l
∫
Ω

|w|p−2wφ1dx.

On the other hand, by −∆pφ1 = λ1φ1, we must have

∫
Ω

|∇w|p−2∇w∇φ1dx = λ1

∫
Ω

|w|p−2wφ1dx,

which is impossible since l > λ1.
Thus, {un} is bounded in W1,p

0 (Ω), and the proof is completed.
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