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1-Soliton Solution of the Coupled Nonlinear
Klein-Gordon Equations
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Abstract: This paper studies the coupled Klein-Gordon equations #1)®Bnd (&2) dimen-
sions. The cubic law of nonlinearity and arbitrary power laawnlinearity are considered in this
paper. The 1-soliton solution of the coupled system, fonhlsakes, is obtained. The solitary wave
ansatz is used to carry out the integration.
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1. INTRODUCTION

The nonlinear Klein-Gordon equation (NKGE) is an importagtiation in the area of nonlinear evolution
equations (NLEE) [1-10]. NKGE arises in theoretical phgsjgarticularly in the area of relativistic quantum
mechanics. There has been various methods that has beeedafgptarry out the integration of this
equation. They are variational iteration method, expdaéfinction method, Adomian decomposition
method,G’ /G method of integration, semi-inverse variational prineipln this paper, the focus is going
to be on the integration of 2-coupled NKGE with cubic nondiriy. The solitary wave ansatz method
will be used to carry out the integration. Finally, the réswlill be extended to the case of 2-coupled
NKGE with arbitrary power law nonlinearity. In both casd®s results will be studied in 1) and (1+2)
dimensions [3].

2. CUBIC NONLINEARITY
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In this section, the coupled NKGE will be studied with cukagvlof nonlinearity. The study will be split
into the following two subsections which are on+{) and (}+2) dimensions respectively.

21 (1+1) Dimensions

The dimensionless form of the 2-coupled NKGE ir{3-dimensions with cubic nonlinearity is given by [3]

Ot — KO + 10 + b1G® + c10r? = 0, 1)

Pt — K2y + @of + bor® + c0%r = 0, (2)

where in (1) and (2), the dependent varialfjesndr are the wave fields whilg andt are the independent

variables that respectively represent the spatial anddeshpariables. This coupled equation was already
studied in 2005 where doubly periodic solutions were olet@if3]. In this paper, the search is going to be
for the non-topological 1-soliton solution to (1) and (2huUE, the solitary wave ansatze are taken to be [6]

f— Al
q(xs t) - COSWl T’ (3)
and
reey = costz 7’ )
where
T = B(X—W), ®)

and in (3) and (4)A; andA;, represent the soliton amplitudes whidés the inverse width of the soliton and
vis the soliton velocity. The unknown exponepisandp, that are to be determined that will be discovered
by the balancing method during the soliton solution deidraprocess. Thus, from (3) and (4)

PVVAIB?  py(py + VA, B?

Gt = o 7 oot Zr (6)
P2AIB?  py(py + 1)A1B?
Oxx = T > (7)
cost* r cost 2
and
. PRVPAB?  py(pz + 1)VPALB? @®)
7 “cosi 7 cost>*2¢ '
P3AB”  pi(2+ 1)AB?
Mxx = . 2 (9)
cosh? r cost2*2 ¢
Substituting (6)-(9) into (1) and (2) respectively gives
p? (v2 - kZ) AB?  pi(pr+1) (v2 - kZ) A;B?
costr cost*2 ¢
by A3 C1ALAZ
A LA G 1A _o, (10)

cost't ' cosiiPr  cosH*2Pz ¢

31



Ryan Sassaman, Matthew Edwards, Fayequa Majid, & Anjan&iSiudies in Mathematical Sciences
\ol.1 No.1, 2010

and
P2 (V2 - K2) AgB? (2 + 1) (V2 — K2) AgB?
cost2 r B costt2 ¢+
aAy boAS CAZA,
costPer * cost®r | coshPi P 1
From (10) equating the exponents;3andp; + 2, by the aid of balancing principle, gives [7, 8]

= 0. (11)

3p1=p1+2 (12)
which yields
pp=1 (13)
and similarly, from (11), equating the exponenfs andp, + 2 also yields
p2 =1 (14)

Now, from (10), the linearly independent functions arecast**) r for j = 1,2 and hence setting their
respective coicients to zero yields

—a;
8= Ve %)

and
b1AZ + c1AZ + 2a; = 0. (16)

Similarly from (11), the linearly independent functiong dy cost?*) 7 for j = 1, 2 and hence setting their

respective coficients to zero yields [6]
—ap
B=, /m a7)

and
CoAZ + byAS + 2a; = 0. (18)
From (15) and (18) equating the two values of the soliton lwiglgives
ai; = ap, (19)
and finally solving the coupled system of equations with tigan amplitudes yield
2a; (cy — by)
A= | —= 2
1 bibs - C1Cy (20)
and
2ay1 (by — ¢2)
A= | —————=. 21
2 C1Co — blbz ( )

Hence, the 1-soliton solution to (1) and (2) are respegtigelen by
q(x,t) = m (22)
and
A
coshB(x—vi)]’
where the amplitudes; andA; are respectively given by (20) and (21), while the solitodtwB is given
by (15) or (17). These introduce the solvability conditiaven by (19).

rxn = (23)
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2.2 (1+2) Dimensions

The (1+2) dimensional extension of the NKGE with cubic law of noebmity is given by

Gt — K2 (Choc + ) + @10 + b1 + caar® = 0, (24)

re — K2 (rxx + ryy) +aor + bord + cgPr = 0, (25)

where in (24) and (25), the dependent varialgjesdr are the wave fields. The independent variabies
andy are both spatial variables, in this case asthys as the temporal variables. The solitary wave ansatze
are same as given by (3) and (4) respectively with this case being given by

T =B X+ Bzy— wt. (26)

Here, in (26),B; and B, are the inverse widths of the two solitons in thandy directions respectively
and agairv is the soliton velocity. The unknown exponemptisand p, will again be computed later. Thus,
from (3) and (26)

pival _ pl(pl + 1)V2A1

= 27
%= CostPir ~ costfr @7)
B p2A B2 ~ pu(p1 + 1)A B2 (28)
Chox = cost* t costPt2
_ PiABS ~ Pulpr+ 1)A1B3 (29)
Gy = cosH: r cositt2 ¢
and
. A _ PaAp2 + VA, (30)
* 7 cost: cosH?*? ¢
— pgAng B p1(2+ 1)A28§ (31)
7 cost2 T cost22
- pgAng B p1(2+ 1)AZB§ (32)
W cost2 T cost2
Substituting (27)-(32) into (24) and (25) respectivelyigte
p? (V2 - k2B - k?B3) Ay pa(py + 1) (V2 - k2B - k?B3) A, B?
COSHJl T - COSH)1+2 T
by A3 C1AL A2
Ay 1A] 1ALAS _o, (33)

Tcostr T cosPr | cosPe ¢
and
P2 (V2 - K2B2 - K202) Ay pa(pz + 1) (V2 — K2B2 — K2B2) Ag
cost* t cost2t2
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A bzAg CZA%AZ
+
cost?7 * cosh?r  costP Pz ¢

Similarly from (33) and (34), as before the same valuep;cdind p, are obtained as in the previous case.
Identifying the linearly independent functions in (33) dB84d) yields the relations [7, 8]

=0. (34)

V2 + a1
B+ B3 = iz (35)
2 2 V2 + ap
Bl + BZ = T, (36)

along with the same coupled equations for the amplitudesattigagiven by (16) and (18). Therefore the
amplitudesA; andA; are the same as in (20) and (21) and from (35) and (36), the sanstraint condition
as in (19) is obtained. Hence, finally, the 1-soliton solutio (24) and (25) is given by

Aq

WeY) = SorEs By =0 (37)

and
A
coshBix + Byy — wt)’

rxy.t) = (38)

where the amplitude&; andA; are respectively given by (20) and (21), while the solitodtwsB; andB,
are given by (35) or (36). These solutions introduce theadulity condition given by (19).

3. POWER LAW NONLINEARITY

In this section, the coupled NKGE will be studied with powawlof nonlinearity. The study will be split
into the following two subsections which are on+{) and (}2) dimensions respectively.

3.1 (1+1) Dimensions

The dimensionless form of the 2-coupled NKGE ir{)-dimensions with cubic nonlinearity is given by [9]

N

Ot — K20 + @10 + 1™ + c1q™r" = 0, (39)

Pt — K2y + @of + bor™™ + cog"r™ = 0, (40)

where in (39) and (40), the exponemsandn are positive numbers. The starting hypothesis is going to be
the same as (3) and (4). In this case (10) and (11) respsciaelice to

P2 (V2 - K?) A B? (Pt d) (V2 - k?) Ay B?
cost* 7 cost:*2 ¢

a A by AT C1ATAY
e B 17 + 1 1+n -0, (41)
cost*7 = cosH™MWPi+  cosH™P2 ¢

and
P2 (V2 - k2) AgB?  pp(pz + 1) (V2 — KZ) AgB?
cost? r - cost>*2 ¢
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mn nAm
C(?;gf-r Co:i{':in)pz 7 Cozi?ﬁiﬁnzpz - 0. (42)
From (41) equating the exponenis £ n)p; andp; + 2 gives [7, 8]
(M+n)pL=p1+2 (43)
which gives
pL = ﬁ’ (44)

and similarly, from (42), equating the exponents«{ n)p, andp; + 2 that yields the same value pf as in
p1 seen in (44).

Now, from (42), the linearly independent functions afeasH**! « for j = 1, 2 and hence setting their
respective coicients to zero yields

m+n-1 —a1
B= 4
> ‘/vz-kz’ (45)

20, AT 4 26, ATFLAD + (M4 n - 1)ay = 0. (46)

and

Similarly from (42), the linearly independent functiong &y cost2*) r for j = 1,2 and hence setting their
respective coicients to zero yields

m+n-1 -
B=""> V2 - k2’ 47

20,ATATL 4 2B, AT 4 (m+ n— 1)ay = 0. (48)
1

and

From (45) and (47), equating the two values of the solitorntlwigigives the same constraint condition as
(19). The amplitudes of the soliton are obtained by solvimg ¢oupled system given by (46) and (48).
Hence, the 1-soliton solutions to (39) and (40) are given by

A
coshi[B(x — )]

qx.t) = (49)

and
Ao

r(x,t) = > ,
coshmri[B(x — vt)]

(50)

where the amplitudesy and A, are respectively given by the coupled system (46) and (4B)levthe
soliton widthB is given by (45) or (47). These lead to the solvability coieditgiven by (19).

3.2 (1+2) Dimensions

The (1+2) dimensional extension of the NKGE with cubic law of noefnity is given by

Gt — K (Choc + Chy) + @00 + 02g™" + ™" = O, (51)
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re — K2 (rxx + ryy) + aof + bor™" + cor™g" = 0, (52)

where in (51) and (52), the dependent varialgjesdr are the wave fields whilg, y andt are the indepen-
dent variables that respectively represent the spatiatemngoral variables. In order to solve (51) and (52)
for soliton solution the starting hypothesis is the sam&garid (4) withr being given by (26). Substituting
(27)-(32) into (51) and (52) respectively yields

p?(v2 - k2BZ2 - k2B2) Ay pa(py + 1) (V2 - k2BZ - k2B2) A, B?
cost* ¢ cost*? ¢

il buA il ko B (53)
cost' r * cosf™MPi ¢ costPrtPer

and

P2 (V2 - K2B2 - K202) Ay pao(pz + 1) (V2 — K2B2 — K2B2) A
cost* t - cost2t2

Ao b AT CQAIAY 0 (54)
cost?t ~ cosf™MP2 - cosiPrtMPz o

Equations (53) and (54) yields as before the same valugs ahd p, as in (44). Identifying the linearly
independent functions in (53) and (54) yields the relations

4 +a(m+n— 1)
a2 :

B+ B3 = (55)

4 + a(Mm+n— 1)

2 2 _
Bl +B5 = e

(56)
along with the same coupled equations for the amplituddsatteagiven by (46) and (48) and the same
constraint condition as in (19) is obtained. Hence, findltlg, 1-soliton solution to (51) and (52) is given by

A
coshm (Bix+ By — vt)’

qx,y,t) = (57)

and
Ao
costm (Bix+ Boy — vt)’

rxy.t) = (58)

where the amplitudesy and A, are respectively given by the coupled system (46) and (4B)levthe
soliton width B is given by (55) or (56). These give the solvability conditigiven by (19). Additionally,
the solitons (57) and (68) introduce the constraint on thpagntsn andn that is given by

m+n>1 (59)

which must hold for the solitons to exist.
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