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Multiple-Soliton Solutionsfor Extended Shallow Water
Wave Equations

Abdul-M ajid Wazwaz!*

Abstract: Four extended shallow water wave equations are introducgdtdied for complete
integrability. We show that the additional terms do not #ik integrability of the typical equa-
tions. The Hereman’s simplified method and the Cole-Hopfdfarmation method are used to
show this goal. Multiple soliton solutions will be deriveatfeach model. The analysis highlights
the dfects of the extension terms on the structures of the obtaioletions.
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1. INTRODUCTION

In [1-2], the (2-1)-dimensional shallow water wave equations

th + uXxxy - 3uXxuy - 3uXqu = 0, (1)
and

uXt + uXxxy - ZUXxuy - 4uXqu = 0, (2)

were studied. Both equations reduce to the potential Kd\atguo fory = x. The diference between the
two models (1) and (2) is thatreplaces in the termuy; and in the cofiicients of the other terms.

In [1,3], the (3+1)-dimensional shallow water wave equations
Uyzt + Uxwyz — BUxUyyz — BUsglyy = O, (3)
and
Uszt + Uxsyz — 2(UxxUyz + UyUez) — 4(UxUxyz + UxeUyy) = 0, (4)

were also studied. Both equations reduce to the potentigl &gliation forz = y = x. The diference
between the first terms of the two models is tkagplaces in the termuy,.

The focus of the studies on Egs. (1)—(4) in [1-3], and soméef¢ferences therein was to show that
each model is completely integrable and each one givesaisaittiple soliton solutions. For more details
about the results obtained for these equations, read [he33a@me of the references therein.

In this work, we will introduce four extended shallow wateawe equations in (1) and (3-1) dimen-
sions. We first introduce the first two extended equations
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and
Ust + Uxxxy — 2UxxUy — 4UxUyy + @Uyy = O. (6)

We next introduce the two extended{B-dimensional shallow water wave equations
Uyzt + Usxxyz — BUxUyyz — BUyUyy + Uy, = 0, (7)

and
Uzt + Uxxyz — 2(UxxUyz + UyUyxz) — 4(UxUxyz + Uxzlyy) + @Uyyz = O. (8)

The extended equations are established by adding the tiezigéu(x, t) with respect to the space variables
x andy for the first two equations (1) and (2), and with respect tosihece variables, y, andz for the last
two equations (3) and (4).

A variety of distinct methods are used for classificationmégrable equations. The Painlevé analysis,
the inverse scattering method, the Backlund transfoonatiethod, the conservation laws method, and the
Hirota bilinear method [4—13] are mostly used in the litaratfor investigating complete integrability. The
Hirota’s bilinear method [1-22] is rather heuristic and gesses significant features that make it ideal for
the determination of multiple soliton solutions for a widass of nonlinear evolution equations.

Our aim from this work is two fold. We aim first to show that theéd#ional termsaxuyy for the first
two equations, anduyy, for the last two equations do not kill the integrability ogttypical shallow water
wave equations (1)—(4). We next aim to derive multiple salisolutions for these extended forms (5)—
(8) and to show theflect of these new terms on the structures of the obtainedieatut The Cole-Hopf
transformation combined with the Hereman'’s method, that @sablished by Hereman et. al. in [13] will
be used to achieve the goals set for this work. The Heremagtbad can be found in [13—-22], hence our
main focus will be on applying this method.

2. THE FIRST EXTENDED SHALLOW WATER WAVE EQUA-
TION

In this section we will study the extended{P)-dimensional shallow water wave equation
Uyt + Uxxxy — SUxxUy — 3UxUyy + Uy = 0. 9)

As stated before, the Hereman’s method and the Cole-Hopsfwamation method will be used for this
analysis.

2.1 Multiple Soliton-Solutions

Substituting
u(xy.t) = €6 = kx+ry-ct, (10)
into the linear terms of (9), and solving the resulting eguatthe dispersion relation
G=k+ak,i=12,---N, (11)
and hence
6 = kix+ iy — (K + akt, (12)

are readily obtained. Notice that the dispersion relatias affected by the extension termu,y.
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To determineR, we substitute the Cole-Hopf transformation

B . MC8A))
U(X, y: t) - R(In f(X7 y: t))X - R f(X, y’ t) 2 (13)
where the auxiliary functiorfi(x, y, t) is given by
f(xy,t) = 1+ goxry-(rakt (14)

into Eq. (9) and solve to find th& = —2. This means that the single soliton solution is given by

2kleklx+r1y—(lél+ak1)t

ux.y. ) = - 1+ eaxrny-(rak)t’ (15)
For the two-soliton solutions, we use the auxiliary funetio
fY, 1) =1+ € + €2 + ape"t?, (16)
into (13), and substitute the result in Eq. (9) to find the pretsft
= o, an
and hence (k — k(i = 1)) o
aj=—— ! Vg <icj<N (18)

SRCELGEAD)
Comparing the results for the phase shifts does not showféewnt &om the extension termu,,. The result
(17) is the same as obtained for (1) in [2].

It is also clear that the phase shifis, 1 < i < j < N depend on the cdicientsky, andry, of the spatial
variablesx andy respectively. Moreover, we point out that the first extensleallow water wave equation
does not show any resonant phenomenon [10] because thegttifi$ermay, in (17) cannot be 0 o for
kel # [kol andry| # [r2|.

This in turn gives

fxy,t) = 1+ ek1x+r1y—(kf+ak1)t + ek2x+r2y—(k§+ak2)t

(ka=ko)(r1=T2) ol +ho)xr(ra 1)y —(kE+aky +d+ako)t (19)

t k) (i)

To determine the two-soliton solutions explicitly, we stitioge (19) into the formula = —2[In f(x, Y, t)]x.
Similarly, to determine the three-soliton solutions, we se

f(X, Y, t) - 1+ ek1x+r1y—(lél+ak1)t + ek2x+r2y—(kg+ak2)t + ek3x+r3y—(lé+ak3)t
(ka—ka)(ri—r2) ks +ho)x(ra-+r2)y—( +aky +iG+ake)t

Ek1+k2;£r1+r2

Ki—ks r1—f3; e(k1+k3)x+(r1+r3)y—(I@1+ak1+k§+ak3)t (20)

Ek1+k3;£r1+r3;

+ (ko—ka)(ra—r3) e(k2+k3)X+(r2+r3)y—(@+akz+k§+ak3)t
S sk o+ K3 +aka)t

+ by gz elkatkerke)xr(ri+ra+1a)y—(G +a 1+-+akg i +ak)t

into (13) and substitute it into the Eq. (9) to find that

D123 = a10a13823. (21)

To determine the three-soliton solutions explicitly, wbstitute the last result fof(x, y, t) in the formula
u(x y,t) = =2(In f(x, y, t))x. The higher level soliton solutions, far> 4 can be obtained in a parallel man-
ner. This shows that the first extended-12-dimensional shallow water wave equation (9) is complete
integrable and gives rise to multiple-soliton solutiongoy order.
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3. THE SECOND EXTENDED SHALLOW WATER WAVE EQUA-
TION

In this section we will study the second extendedidimensional shallow water wave equation
Uyt + Uxxxy — 2UxxUy — 4UxUyy + aUyy = 0. (22)

We will follow a manner parallel to the approach employedbef

3.1 Multiple Soliton-Solutions

Substituting
u(xy.t) = €. 6 = kix+ry-cit, (23)

into the linear terms of (22), and solving the resulting emuewe obtain the dispersion relation
G =Kri+ar,i=12---N, (24)

and hence#, becomes
O = kKX+ry-— (kizl’i + arj)t. (25)

Notice that the dispersion relatian depends on the cfiicientsk; andr; of the spatial variablex andy
respectively, and isfiected by the extension terdaulyy.

To determineR, we substitute

_ _ fX(Xs y’ t)
where the auxiliary function
foy,t) =1+ eklx+r1y—(kfr1+ar1)t’ (27)

into Eq. (22) and solve to find th&= —2. This means that the single soliton solution is given by

2k1ek1x+k1y—(kfr1+ar1)t

uxy. ) = - 14+ e|<1x+k1y—(k§r1+ar1)t' (28)
For the two-soliton solutions, we us the auxiliary function
fxy, 1) = 1+ € + &2 + a ettt (29)
into (26), withR = —2, and we use the outcome into Eq. (22) to obtain
(ky — ko)?
= ——+o 30
2= G TR (30)
and hence - k)2
=k o
a;=——,1<i<j<N 31
BN CETICER D

It is obvious that the phase shiftg,1 < i < j < N do not depend on the cfigientsr; of the spatial
variabley. Moreover, we point out that the second shallow water wavaggn does not show any resonant
phenomenon [10] because the phase shift ternin (30) cannot be 0 oso for |k;| # |ko|. Moreover, the
phase shift was noffiected by the extension terdguyy.
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Consequently, we obtain

f(X, Y, t) - 1+ ek1x+r1y—(kfr1+ar1)t + ek2x+r2y—(k§r2+ar2)t

n % ki ko) (11 +12)y—((Gra+ar) +(ra+ara))t

(32)

To determine the two-soliton solutions explicitly, we stitoge (32) into the formula = —2[In (X, y, t)]«.
Similarly, to determine the three-soliton solutions, we se
f(xy,t) = 1+ ek1x+r1y—(k§r1+ar1)t + ek2x+r2y—(k§r2+ar2)t + ek3x+r3y—(k§r3+ar3)t

" % lka ko) (11 +12)y—((€r1+ars)+(KBro+aro))t

" % lkarke)x (11 +r3)y—((r1+ars)+(Karg+ara))t (33)

" % ko ke)xH (1o +ra)y—((1ro+ary)+(Karg+ara))t

+ b123 e(k1+k2+k3)x+(r1+r2+r3)y—(kfr1+ar1+k§r2+ar2+k§r3+arg)t
into (26) and substitute it into Eq. (22) to find that
b123 = aroaszans. (34)

To determine the three-soliton solutions explicitly, wéstitute the last result fof(x, y, t) in the formula
uix,y,t) = =2(Inf(x,y,t))x. The higher level soliton solutions, for > 4 can be obtained in a parallel
manner. This shows that the second extended J2limensional shallow water wave equation (22) is
completely integrable and gives rise to multiple-solitotutions of any order.

4. THE THIRD EXTENDED SHALLOW WATER WAVE EQUA-
TION

In this section we will study the extended{B)-dimensional shallow water wave equation

We will apply the approach used before, hence we will skigitket
4.1 Multiple Soliton-Solutions

To determine multiple-soliton solutions for Eq. (35), wefisubstitute
u(x.y.zt) = &,6 = kx+ry+ sz-cit, (36)
into the linear terms of (35), and solving the result to abtae dispersion relation
G =k +ak,i=12--N, (37)

and hence;, becomes
6 = kix+ry+sz— (kK + ak)t. (38)

Notice that the dispersion relatian depends only on the cfiiwientsk; of x and does not depend on the
codficientsr; ands of the spatial variablegandz respectively. Moreover, the extension tarm,, affected
the dispersion relation.
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To determineR, we substitute the Cole-Hopf transformation

fu(X Y,z 1)

ux,y,zt) =R(n f(x,y,z1), =R ,
(% y,z1) =R(In f(xy,z1)), fxy.20)

(39)
wheref(x,y, z t) = 1+ ex+ryrsiz(G+akit jnto Eq. (35) and solve to find th&= —2. This gives the single

soliton solution by
2klek1><+k1y+slz—(k§+ak1)t

uxy.zt) = - 1 + axrkiy+siz-(G+ak)t” (40)
For the two-soliton solutions, we substitute
f(xy,zt) =1+ e+ &2 + a1, (41)
into Eq. (35) to obtain the phase shift
_ (a-ko)? (42)
127 (ke + k)2’
and hence (k- k)?
= k; o
aij:—(ki+kj)2,1s|<JsN. (43)

Itis clear that the phase shifé, 1 <i < j < N depend only on the cdiécientsk, of the spatial variable

X. Moreover, the extension terau,y, has no &ect on the phase shift. We point out that the third extended
shallow water wave equation does not show any resonant piesman [10] because the phase shift term
a2 in (17) cannot be 0 o for |ky| # |Ka|.

This in turn gives

f(X, V.2, t) - 1+ ek1x+r1y+slz—(kf+ak1)t + ek2x+r2y+sqz—(k§+ak2)t
1 kel (o) (ry )y (514 52)2- (6 ke )+ (G-raka))t (44)
(ki +ko)? :
To determine the two-soliton solutions explicitly, we stiose (44) into the (39) and using= -2.
Similarly, to determine the three-soliton solutions, we se
f(X, V.2, t) - 1+ ek1x+r1y+slz—(lél+ak1)t + ek2x+r2y+522—(@+ak2)t + ek3x+r3y+59,z—(k§+ak3)t
+ % ka1 +r2)y+(s1+82)2—((kS +ako)+ (S +ake))t
1+K2,
n % ki +ka)xeH(r1+13)y+(1+80)2=((IG +ako)+ (G +aka))t (45)
m
N % llarla)xe (r2 )y (52 +50)2- (G ko) +( ake)t
m
+ b12233e(k1+k2+k3)x+(r1+r2+r3)y+(sl+sz+53)2—(k§+ak1+@+ak2+k§+ak3)t
into (39) and substitute it into Eq. (35) to find that
D123 = A12813823. (46)

To determine the three-soliton solutions explicitly, wéstitute the last result fofr(x, y, z t) in the formula
uixy,zt) = =2(In f(x,y, z t))x. The higher level soliton solutions, for> 4 can be obtained in a parallel
manner. This shows that the extendedIB-dimensional shallow water wave equation (35) is conghjet
integrable and gives rise to multiple-soliton solutionsiny order.
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5. THEFOURTH EXTENDED SHALLOW WATER WAVE EQUA-
TION

We close our analysis by studying the fourth extended jalimensional shallow water wave equation
Uzt + Uxxyz — 2(UxxUyz + UyUyxz) — 4(UyUxyz + UxrUyy) + @Uyyz = 0. 47

The Hereman’s method and the Cole-Hopf transformationbeillsed to conduct this analysis.

5.1 Multiple Soliton-Solutions

To determine multiple-soliton solutions for Eq. (47), wéd the steps presented above. We first substitute
u(x.y.zt) = &,6 = kx+ry+ sz-cit, (48)
into the linear terms of the (47), and solving the resultiqgation we obtain the dispersion relation
G =Kri+ar,i=12---N, (49)
and hence we set
6 = kix +riy+sz— (Kri + ant. (50)

Notice that the dispersion relatiendepends only on the céigientsk; andr; of the spatial variables and
y respectively, and on the extension tegny,.

We next use the Cole-Hopf transformation

(X Y,z t)

Y20’ D

uix,y,zt) =R
wheref(x,y,zt) = 1+ doxrnyrsiz-(n+ent jntg Eq. (47) and solve to find th& = —2. This gives the

single soliton solution
Zklek1x+k1y+slz—(kfr1+m1)t

U(X, Y. % t) =" 14+ ek1x+k1y+slz—(kfr1+ar1)t : (52)
For the two-soliton solutions, we use
f(xy,zt) =1+ e + &2 + a1, (53)
into Eq. (47) to obtain
(k1 — ko)?
= — 4
a1z ket k)2 (54)
and hence - k)2
=k o
= — 1< <N.
aj KTk <i<j< (55)

It is clear that the phase shifés, 1 <i < j < N depend only on the cdiécientsky, of the spatial variable

X. The other cofficientsr,, S, anda has no &ect on the phase shifts. Moreover, we point out that the first
shallow water wave equation does not show any resonant piesman [10] because the phase shift term
ai2 in (54) cannot be 0 o for |ky| # |Ka|.

This in turn gives

f(X, V.2, t) - 1+ ek1x+r1y+slz—(k§r1+ar1)t + ek2x+r2y+522—(k§r2+ar2)t

+ % e(kl+k2)x+(r1+r2)y+(sl+sz)z—((kfr1+nr1)+(k§r2+ar2))t.

(56)
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To determine the two-soliton solutions explicitly, we stitoge (56) into (51) withR = -2.
Similarly, to determine the three-soliton solutions, we se
f(xy,zt) = 1+ ghaxariy+siz=(€ritaro)t | ghox+ray+,z-(Karo+ara)t
4 gax+ray+ssz—(Kra+ara)t
% glkathk)xH(ri+r2)y+(si+82)z-((Kritar)+(Gratar))t

ke g " (57)
+ o elki+ka)x+(ra+ra)y+(si+ss)z—((kira+ara)+(ksra+ars))t
+ % glka+ke)xH(r2+ra)y+(se+Se)z-((Kr2+ara)+(Krs+ara))t
+ D123 e(k1+k2+k3)x+(r1+r2+r3)y+(sl+52+s@z—(kfr1+ar1+k§r2+ar2+k§r3+ar3)t’
and proceed as before we obtain
D123 = 12813903 (58)

To determine the three-soliton solutions explicitly, wéstitute the last result fof(x, y, t) in the formula
ux,y,zt) = =2(Inf(x,y,z1t))x. The higher level soliton solutions, for> 4 can be obtained in a paral-
lel manner. This shows that the fourth extendedl(Bdimensional shallow water wave equation (47) is
completely integrable and gives rise to multiple-solitotutions of any order.

6. CONCLUSIONS AND DISCUSSIONS

From the results obtained above, we can make the followinglasions:

1. The extension termau,, andauyy, that were added to the first two models and the last two monels i
(1)—(4) did not kill the integrability of these four modelEhe extended models were proved to retain
the integrability and multiple soliton solutions were faihy derived for each extended model.

2. The only &ect of the extension terms was on the dispersion relatioh@srsabove.

3. The phase shifts of the typical shallow water waves eqnat{1)—(4) and for the extended models
(5)—(8) were the same without any change and fiected by the extension terms.

In this work we have examined four extended shallow wateresaquations in higher dimensions.
We have showed that the extended terms do not kill the inbdgyaof the extended equations. Multiple
soliton solutions have been formally derived for these &qna. The only &ect caused by the extended
terms is on the dispersion relations, whereas the phads shihain unchanged. The Hereman’s method
and the Cole-Hopf transformation method shdieetiveness and reliability in handling nonlinear evolatio
equations.
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