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Fractional Euler-Lagrange Equations of Order ( , )α β  
for Lie Algebroids 

El-Nabulsi Ahmad Rami1,* 

Abstract:  The main purpose of this paper is to derive the fractional Euler-Lagrange equations 
which depend on the Riemann-Liouville derivatives of order ( , ), 0, 0α β α β> > for Lie algebroids. 
The fractional Hamiltonian formalism was also discussed. Two examples in particular the 
fractional geodesics for Lie algebroids and the Wong's fractional equations which arise in the 
dynamics of a colored particle in Yang-Mills field and on the falling cat theorem were also 
derived.  

Key Words: Fractional Action-like Variational Approach; Fractional Lagrangian and Hamil- 
tonian Formalisms; Lie Algebroids 

1. INTRODUCTION 

The Fractional Calculus of Variations (FCV) based on fractional calculus [1-18] was proved recently to be 
a useful tool for description of weak dissipative and nonconservative dynamical systems with holonomic 
and nonholonomic constraints. The respective Euler-Lagrange type equations are a subject of current strong 
research and investigations [19-25]. An extension of Noether's symmetry theorem to the FCV has recently 
introduced by the author as the fractional action-like variational approach (FALVA) with many interesting 
applications and features [26-32]. In this work, our main aim is to derive the fractional Euler-Lagrange 
equation on Lie algebroids. However, the fractional Euler-Lagrange equations based on the FALVA with 
one parameter α  defined on Lie algebroids were investigated more recently [33]. In this paper, we will 
enlarge the problem and describe the fractional Euler-Lagrange equations which depend on the 
Riemann-Liouville derivatives of order ( , ), 0, 0α β α β> >  for Lie algebroids. We will in addition explore 
the corresponding fractional Hamilton equations. 

In fact, since a Lie algebroid is a concept which simply unifies tangent bundles and Lie algebras, 
naturally, one can expects their relation to classical mechanics. Further, it has proved to be a powerful tool 
in the investigating of many fundamental problems in applied mathematics in general and differential 
geometry in particular [34-38]. In the context of classical mechanics, a theory of Lagrangian and 
Hamiltonian systems on Lie algebroids has been explored in some details using the linear Poisson structure 
and the dual of the Lie algebroid and the Legendre transformation associated with the regular Lagrangian 
[34]. Thus, a powerful mathematical structure has emerged. Within FALVA framework, it was proved that 
the set of admissible curve on a Lie algebroid with fixed endpoints can be endowed with a structure of 
Banach manifold, that the fractional action integral in FALVA is continuously differentiable and that the 
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equations for the critical points are precisely of the fractional Euler-Lagrange equations obtained in 
FALVA for the given Lagrange system [33].  

The fundamental problem of the FCV with Riemann-Liouville fractional integral of order 
( , ), 0, 0α β α β> > , as introduced by El-Nabulsi-Torres in [39] is the following: consider a smooth manifold 
M  and let L  be an admissible smooth Lagrangian function : , 1d dL d× × → ≥ . For any piecewise 
smooth path 0 1:[ , ]q t t M→  satisfying the boundary conditions ( ) aq a q=  and ( ) bq b q= , the fractional 
functional associated to L  is defined by 

                                                 ( ) [ ] ( ) ( ) ( )( )( ) 1, ,
, ,

1 , ,
b

a b
a

S q L D q q t dαα β α β
γγ τ τ τ τ τ

α
−= −

Γ ∫ ,                          (1)  

where the fractional derivative operator of order ( , )α β  is defined by 

                                                         , 1
2 2a ab b

iD D D D Dβ βα β α α
γ

γ
+ ++ +

⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦ ⎣ ⎦ ,    γ ∈ .                                 (2)  

The critical points of ( ) [ ],
, ,a bS qα β

γ  were proved to satisfy the following Euler-Lagrange equations: 

( ) ( )( ) ( ) ( )( ), , ,
;, , , ,L LD q q D D q q

q q
α β β α α β
γ γ τ γτ τ τ τ τ τ−

∂ ∂
−

∂ ∂  

                                                                      ( ) ( )( ),1 , ,L D q q
t q

α β
γ

α τ τ τ
τ

− ∂
=

− ∂
.                                                 (3) 

where ,
,Dβ α

γ τ−  represents the fractional time derivative with respect to τ . 

2. FRACTIONAL EULER-LAGRANGE EQUATIONS ( , )α β  FOR 
LIE ALGEBROIDS 

A Lie algebroid structure on a vector bundle : E Mπ →  is given by a vector bundle morphism : E TMρ →  
over the identity in M , called the anchor map, together with a Lie algebra structure on the space 

( )C M∞ -module of sections of E  determined by the Lie bracket which induces a Lie algebra 
homomorphism ρ  from Sec( ) ( )E Mχ→ by the anchor map : E TMρ →  given by 

Sec( ) ( )( ) ( )E x Mσ ρ σ χ∈ → ∈ , where ( )( ) ( ( )),x s x x Mρ σ ρ= ∀ ∈ , satisfying the Leibniz compatibility 
identity: 

                                       [ ] [ ], ( ( ) ) ,E Ef f fσ η ρ σ η σ η= + , ( ), , Sec( )f C M Eσ η∞∀ ∈ ∈ .                              (4) 

A vector bundle ( , , )E Mξ  endowed with a Lie algebroid structure ([ , ] , ) E ρ⋅ ⋅ is called Lie algebroid over M 
and is denoted by ( ,[ , ] , )EE ρ⋅ ⋅ .  

A local coordinate system ( )ix in the base manifold M  and a local basis { }eγ of section of E , 
determine the local coordinate system ( , )ix yη on E . The anchor and the bracket are locally determined by 
the local structure functions i

γρ  and i
jkC structure functions , ( )k

i ijC C Mγρ ∞∈  of ( ,[ , ] , )EE ρ⋅ ⋅ , which satisfies 
the following relations which results from the Leibniz identity and the Jacobi identity: 
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                                                        j ki
k iji j C

x x

σ σ
η η σ

η η

ρ ρ
ρ ρ ρ

∂ ∂
− =

∂ ∂
, 1,nη = , 1,i m= ,                                         (5) 

                                                             
( , , )

0
l
jk h l

jk ihi
cyclic i j k

C
C C

x
η

ηρ
⎛ ⎞∂
⎜ ⎟+ =
⎜ ⎟∂⎝ ⎠

∑ ,                                                     (6) 

where ( )i ie η
ηρ ρ= ∂ , xηη∂ ∂ ∂ and , k

i j ij ke e C e⎡ ⎤ =⎣ ⎦ .  

We consider now the space of E -paths on the Lie algebroid denoted by [ ]( , ), ,J E J a b=P , which is a 
differentiable Banach manifold [33]. 

Theorem 2.1  Let ,( ( ), ( ), )L D q qα β
γ τ τ τ be a Lagrangian on the Lie algebroid E with admissible curve q in 

E  and with two fixed endpoints   

{ }, ( , ) ( , ) ( ( ))  and ( ( ))B
AA B M J E J E q a A q b Bπ π∈ ⊂ = = =P P

. 

The critical points of the fractional action integral ( )
,
, , : ( , )a bS J Eα β

γ →P  defined by: 

        ( ) [ ] ( ) ( ) ( )( )( ) ( ]1, ,
, ,

1 , , , ( , ) 0,1
b

a b
a

S q L D q q t dαα β α β
γγ τ τ τ τ τ α β

α
−= − ∈

Γ ∫ , 

on the Banach manifold ( , )B
AJ EP  are exactly those elements of that space which satisfy the following 

fractional Euler-Lagrange equations of order ( , )α β : 

,( ( ), ( ), ) 0,r L D q qα β
γδ τ τ τ =  

where 
, ,( ( ), ( ), ) ( ( ), ( ), ), ( )r

qL D q q dL D q qα β α β
γ γδ τ τ τ τ τ τ σ< >=< ∑ >            

,
,
; ( ( ), ( ), )

,
L D q q

D qα β
γ

β α
γ τ τ τ τ

τ σ−− < >  

                                                          ,( ( ), ( ), )
1 ,

L D q q
q

t α β
γ τ τ τ

α τ σ
τ

−
− < >

−
.                                                      (7) 

Here ( )i i
L L y dyτ = ∂ ∂ in local coordinates. 

Proof. The tangent space on ( , )B
AJ EP  at ( , )B

Aq J E∈P  is nothing than the set of vector fields along q  are of 
the form ( ) : Sec( ) / ( ) ( ) 0q E a bσ σ σ σΞ ∈ = = . The fractional action is smooth, then: 

( ) ( ) ( ) 1, ,
, ,

10 , ( ) ( ( ), ( ), ), ( )
b

q qa b
a

dS f dL D q q f t dαα β α β
γγ σ τ τ τ σ τ τ

α
−=< Ξ >= < Ξ > −

Γ ∫

( )
,1 ( ) ( ( ), ( ), ), ( )

b

q
a

f dL D q qα β
γτ τ τ τ σ

α

⎛
⎡⎜= < Ξ >⎣⎜Γ ⎝
∫  

 
( ),

1,
( ( ), ( ), )

,
L D q q

D q tα β
γ

αα β
γ τ τ τ

τ σ τ −− < > −
 

      
( ),

2
( ( ), ( ), )

( 1) ,
L D q q

q t dα β
γ

α
τ τ τ

α τ σ τ τ− ⎤+ − < > − ⎥⎦  
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( ),
1

( ( ), ( ), )
( ) ,

b

L D q q
a

f q tα β
γ

α
τ τ τ

τ τ σ τ − ⎞
⎟+ < > −
⎟
⎠  

( )
,1 ( ) ( ( ), ( ), ), ( ) ,

b
r

a

f L D q q dα β
γτ δ τ τ τ σ τ τ

α
= < >
Γ ∫  

where we have used the fact that , v( ) ( )q qqf f Dα β
γσ σ σΞ = +∑ . ( )v qρ=  is the actual velocity and , v

qDα β
γ σ  is 

the Riemann-Liouville fractional derivative of the canonical vertical lift of σ . This equation is satisfied for 
every function ( )f C∞∈  and every section Sec( )Eσ ∈ . Thus, the critical points are satisfied by 

,( ( ), ( ), ) 0rL D q qα β
γδ τ τ τ = .                                                                                                                                  

Definition 2.2 In local coordinates ( )i i
L L y dyτ = ∂ ∂ , the fractional Euler-Lagrange equations of order 

( , )α β  is: 

( ) ( ), , ,
;, , , ,i i

L LD x x D D x x
x y

η α β η η β α α β η η
γ γ τ γηρ τ τ−

∂ ∂
−

∂ ∂
  

                                                    ( ),1 , , 0k j
ijk i

L LC y D x x
ty y

α β η η
γ

α τ
τ

∂ − ∂
− + =

−∂ ∂
,                                               (8) 

where , i
iD x yα β η η

γ ρ= . 

Definition 2.3  The term                                                         

                                                ,
,

, ( ( ), ( ), )
1, ,

L D q q
F q q

t α β
γ

α β
γ τ τ τ τ

ασ τ σ
τ

−
< >= < >

−
,                                   (9) 

is called the fractional decaying friction force for Lie algebroids.  

Remark 2.1 When 1β = , equation (7) is the same as the one obtained in [33].  

3. THE FRACTIONAL HAMILTONIAN FORMALISM FOR LIE 
ALGEBROIDS 

We now consider the following general fractional variational problem in local coordinates: 

                                      ( ) [ ] ( ) ( ) ( )( )( ) 1,
, ,

1, , , min
b

a b
a

S x u L y x t dαα β
γ τ τ τ τ τ

α
−= − →

Γ ∫                                  (10) 

                                                                 ( ) ( ) ( )( ), , ,D x u xα β
γ τ ϕ τ τ τ= .                                                       (11) 

A necessary optimality conditions to the following problem for Lie algebroids may be obtained if we 
introduce the augmented fractional action integral [39]:    

( ) ( ) ( ) ( ) ( )( ), , , ,
, ,

1, , , , ,
b

a b
a

S x u p u x pα β α β α β α β
γ τ τ τ τ

α
⎡⎡ ⎤ =⎣ ⎦ ⎣Γ ∫ H  

                                                                      ( ) ( ), ,p D x dα β α β
γτ τ τ⎤− ⎦ ,                                                        (12) 

where  ,pα β  is the fractional Lagrange multiplier and  
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( ) ( ) ( )( ) ( ) ( )( )( ) 1, ,, , , , ,u x p L u x t αα β α βτ τ τ τ τ τ τ τ −= −H  

                                                   
                                                                        ( ) ( ) ( )( ), , ,p u xα β τ ϕ τ τ τ+ ,                                                   (13) 

is the fractional Hamiltonian.  

Theorem 3.1: Let ( ) ( )( ), ,L u xτ τ τ be a hyperregular Lagrangian on the Lie algebroid E with admissible 
curve q in E  and with two fixed endpoints  

{ }, ( , ) ( , ) ( ( ))  and ( ( ))B
AA B M J E J E q a A q b Bπ π∈ ⊂ = = =P P .  

If ( , )x u  is a minimizer of problem (9), then there exists a co-vector function ,pα β such that the following 
conditions hold: 

• The fractional Hamiltonian system for Lie algebroids:  

                                             ( ) ( ) ( )( )
,

, ,
; ,( ) , , ,i

i
D x u x p

p

α β
ηβ α α α β

γ τ α βτ ρ τ τ τ τ−
∂

=
∂

H ,                                       (14) 

( ) ( ) ( )( )
,

,, ,
; ( ) , , ,i iD p u x p

x

α β
α β ηβ α α β

γ τ ητ ρ τ τ τ τ−
∂

= −
∂

H

  

                                                  ( ) ( ) ( )( )
,

, ,
,( ) , , ,k

ij k
j

C p u x p
p

α β
α β α β

α βτ τ τ τ τ∂
−

∂

H ,                                           (15) 

• The fractional stationary condition for Lie algebroids:  

                                                  ( ) ( ) ( )( )
,

,, , , 0u x p
u

α β
α βτ τ τ τ∂

=
∂
H .                                                         (16) 

Remark 3.1 From equation (15), equations (13) and (14) yield:    

( ) ( ) 1, ,
; , ,LD D x x t

u
αβ α α β η η

γ τ γ τ τ −
−

∂⎡ ⎤−⎢ ⎥∂⎣ ⎦
  

                                            ( )( ) 1, , , 0,k j
iji k

L LD x x t C y
x y

αη α β η η
γηρ τ τ −∂ ∂

− − + =
∂ ∂

                                 (17)  

where ,( ) ( )u D xα β
γτ τ= . Equation (17) is equivalent to equation (9). Thus, theorem 3.1 is a generalization of 

theorem 2.1 to the fractional optimal control problem for Lie algebroids.  

Remark 3.2 Equations (14), (15) and (16) are obtained easily if we apply the fractional Euler-Lagrange 
equations (9) of order ( , )α β  to the augmented fractional action integral with respect to ,pα β , x  and u  
respectively.  

Remark 3.3 The fractional Hamilton dynamics for equation (9) on the dual bundle E∗  is represented by the 
fractional vector field: 

( )
,

, ,,r
i

i
x

xp

α β
η

α β α β ηξ ρ ∂ ∂
=

∂∂

HD   
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, ,

,
,( )k

iji k
ij

C p
x p

α β α β
η α β

η α βρ τ
ξ

⎛ ⎞∂ ∂ ∂⎜ ⎟− +
⎜ ⎟ ∂∂ ∂⎝ ⎠

H H .                                          (18) 

Remark 3.4 It is well-know that Noether's theorem is a consequence of the existence of a variational 
description of the dynamical problem. In the standard case when 1α β= = , the Noether energy is conserved. 
This statement does not hold for the case where  ( ]( , ) 0,1α β ∈  over Lie algebroids. To solve the problem, 

one may use the following new notion of fractional constant of notion C : ,
; 0D Cβ α

γ τ− = . 

Example 3.1 As a simple example, we will discuss the geodesics for Lie algebroids. In local coordinates, the 
Lagrangian is (1 2) ( ) i j

ijL g x y y= where the metric ( ) i j
ijg g x e e= ⊗  is expected to induce an isomorphism of 

the vector bundles :g E E∗→ . The fractional Euler-Lagrange equations read:  

, ,
; ( , , )i

ikD g y D x xβ α α β η η
γ τ γ τ− ⎡ ⎤ =⎣ ⎦  

,1 ( , , )i
ikg y D x x

t
α β η η
γ

α τ
τ

−
−

                                                

                                           , ,1 ( , , ) ( , , ),
2

ijj i j
sjik k

g
C g y D x x y D x x

x
η α β η η α β η η

γ γηρ τ τ
∂⎛ ⎞

+ +⎜ ⎟
∂⎝ ⎠

                             (19) 

which can be rewritten in the form 

                                                           ,
;

1 0, 1,i l i j l
ijD y y y y k n

t
β α
γ τ

α
τ−

−
+ Γ − = =

−
,                                       (20) 

where    

1
2

jk ijl kl ik
ij j i k

g gg
g

x x x
η η η

η η ηρ ρ ρ
∂ ∂⎛ ⎞∂

Γ = + −⎜ ⎟
∂ ∂ ∂⎝ ⎠

  

                                                                s s
ik sj jk siC g C g− − ,                                                                             (21) 

are the Christoffel symbols for Lie algebroids. Equation (20) with , i
iD x yα β η η

γ ρ=  are the fractional 
r − geodesics equations of order ( , )α β for : E TMρ → .                            

Example 3.2 Another example concerns the Wong's equations which arise in the dynamics of a colored 
particle in Yang-Mills field and on the falling cat theorem [36-38].  The Lagrangian and the Hamiltonian of 
the theory on the Lie algebroid E  are given by: 

                                                       ( ), i 1( , , v ) v v ,
2

i j
ijL x D x h g u uη α β η η σ

γ ησ= + ,                                           (22) 

                                                        ( )1( , , )
2

ij
i i jx p p h p p g p pη ησ

η η σ= +H ,                                                 (23) 

                                                                       ,( ) ( )u D xα β
γτ τ= ,                                                                (24) 

where , i( , , v )x D xη α β η
γ  is the corresponding dual fibered coordinates on /TQ G  and ( , , )ix p pη

η  is the dual 

coordinates on /T Q G∗ , G  being a compact Lie group, E TM= ×A  with dimTM m=  and  dim n=A , A  
being an arbitrary Lie -algebra of dimension n . h  is a metric on A  and g  is assumed to be a 
Riemannian metric on M . The corresponding fractional Euler-Lagrange equations of order ( , )α β are 
given by 
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                                                      ,
;

1v v v v , 1,k l ik j s k
ji lsD C h h k n

t
β α
γ τ

α
τ−

−
= + =

−
,                                         (25) 

                                                ( ), , , , ,
; ; ; ; ;

1D D x D x D x D x
t

β α β α σ σ β α λ β α ε β α σ
γ τ γ τ λε γ τ γ τ γ τ

α
τ− − − − −

−
= Γ +

−
,                            (26) 

which are the fractional Wong's equations of order ( , )α β  and they are exactly the fractional 
Euler-Lagrange equations of order ( , )α β .  

Remark 3.5 Being that symmetry plays a capital role on classical and modern physics, one can write the 
fractional Euler-Lagrange equations of order ( , )α β  for systems with symmetry based on the Atiyah 
algebroid. This will be explored in a future work. See [40-43] for other interesting applications. 

4. CONCLUSIONS 

Using the fractional action-like variational approach together with Riemann-Liouville fractional 
derivatives of order ( , )α β , we generalize previous results of the FCV for Lie algebroids. The generalized 
fractional Euler-Lagrange equations, the generalized Hamilton equations and the generalized geodesics 
equation for Lie algebroids are derived. It was also proved that the fractional Wong's equations of 
order ( , )α β  are exactly the fractional Euler-Lagrange equations of same order. It would be of interest in the 
future to explore the fractional Lagrange-d'Alembert-Poincaré equations on Atiyah algebroids and 
problems with symmetry. Another interesting problem concerns the gauge invariant Lagrangians in terms 
of groupoids fractional action of order ( , )α β on complex plane [44]. 
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