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A New Error Bound for Shifted Surface Spline
| nter polation

Lin-Tian Luh?

Abstract: Shifted surface spline is a frequently used radial functorscattered data interpola-
tion. The most frequently used error bounds for this radiatfion are the one raised by Wu and
Schaback in [17] and the one raised by Madych and Nelson i Bdth areO(d") asd — 0,
wherel is a positive integer and is the well-known fill-distance which roughly speaking mea-
sures the spacing of the data points. Then RBF people foatdhére should be an error bound
of the form O(wé) because shifted surface spline is smooth and every smanttién shares
this property. The only problem was that the value of the @lumbnstantw was unknown. Re-
cently Luh raised an exponential-type error bound with esgence rat@(w%) asd — 0 where

0 < w < 1is a fixed constant which can be accurately computed [11hotigh the exponential-
type error bound converges much faster than the algebrp&drror bound, the constamntis
intensely influenced by the dimensiaiin the sense) — 1 rapidly asn — 0. Here the variable
x of both the interpolated and interpolating functions lie&t. In this paper we present an error
bound which i90( \/aa/é) where 0< «’ < 1is afixed constant for any fixeq and is only mildly
influenced byn. In other wordsw’ — 1 very slowly amn — o, andw’ << w, especially for high
dimensions. Moreovet)’ can be accurately computed without slighffidulty. This provides a
good error estimate for high-dimensional problems whiehairgrowing importance.

Key Words: Radial Basis Function; Shifted Surface Spline; Error Bqudijh-Dimensional
Approximation

1. INTRODUCTION

In the theory of radial basis functions, it's well known tlaaty conditionally positive definite radial function
can form an interpolant for any set of scattered data. We raample sketch of this process as follows.

Supposé is a continuous function oR™ which is strictly conditionally positive definite of order. For
any set of data pointx(, fj),j = 1,..., N, whereX = {xq, ..., Xy} is a subset oR" and thefj’sare real or
complex numbers, there is a unique function of the form

N
() = p(x) + Y Gh(x = xy), (1)
=1
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wherep(X) is a polynomial inP ., satisfying

m-1’
N
> calx) =0, (2)
j=1
for all polynomialsg in P,y _, and
N
pOG) + Y ch(x = x) = fi, i=1,...,N, 3)

j=1
if Xis a determining set foP ;.
A complete treatment of this topic can be seen in [13] and nodingr papers.

The functions(x) is called theh-spline interpolant of the data points and is of central intgrace in the
theory of radial basis functions. In this papealways denotes a radial function in the sense that the value
of h(x) is completely determined by the norxj of x. Here,P] _, denotes the class of those n-variable
polynomials of degree not more tham- 1.

In this paper we are mainly interested in a radial functidiedsshifted surface spline defined by

h(X) = (=1)"(x2+cAzlog(x2+cA)?, 1eZ, m=1+ g c>0,
xeR", A,neven (4)
where|x| is the Euclidean norm of, and4, c are constants. In fact, the definition of shifted surfacenspl
covers odd dimensions. For odd dimensions, it's of the form
h(x) = (1" 2(x?+c®*2, nodd 1€Z, ={1,23,...}
and > g )

However, this is just multiquadric and we treated it in arogbaper [12]. Therefore we will not discuss it.
Instead, we will focus on (4) and even dimensions only.

1.1 Polynomialsand Simplices

Let E denote an n-dimensional simplex [4] with vertiogs. . ., vn,1. If we adopt barycentric coordinates,
then any poink € E can be written as a convex combination of the vertices:

n+1l n+1l

X= :g:/hvh :E:/h =1 2=>0.
i=1 i=1

We define the évenly spaced” points of degree k to be those points whose barycentricdinates are of
the form
(Ki/k, ka/K, ..., kni1/K), ki nonnegative integers and k - - - + ko1 = ki

It's easily seen that the number of such points is exatittyP,, i.e., the dimension o). In this section
we use N to denotdimP;. What's noteworthy is that our notion of being evenly spaisecery diferent
from the notion of grid. Moreover the shape of the simplexdatednined by its vertices and is very flexible.
Therefore the distribution of the evenly spaced points Has af freedom.

The above-defined evenly spaced points can induce a polghartérpolation process as follows. Let
X1,..., Xn be the evenly spaced pointskhof degree k. The associated Lagrange polynoniasdegree
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k are defined by the conditidi(x;) = dij, 1 < i, j < N. For any continuous map € C(E), (Ilxf)(X) :=
Zi’il f(x)li(X) is its interpolating polynomial. If both spaces are eqeigppvith the supremum norm, the

mapping
Iy : C(E) - Py

has a well-known norm "
|mm=myzymm
i=
which is the maximum value of the famous Lebesgue functitmeasily seen that for any € P,
lIplleo := maxip(X)| < [ITTkll max|p(x)I-
xeE 1<i<N

The next result is important in our construction of the elround, and we cite it directly from [2].

Lemma 1.1 For the above evenly spaced points, ..., Xy}, |[[Tk|| < ( 2kk_ 1 ) Moreover, as n—

2k -1
oo, [[Hyll — ( )

k
Then we need another lemma which must be proven becausgstglaucial role in our development.

Lemmal.2 Let Q< R" be an n simplex in'Rand Y be the set of evenly spaced points of degree k in Q.
Then, for any point x in Q, there is a measursupported on Y such that

f pY)dor(y) = P(¥)

]ﬁﬂ@s(%gly

Proof. LetY = {y1,...,yn} be the set of evenly spaced points of dedeé@e Q. DenoteP; by V. For any
x € Q, let sy be the point-evaluation functional. Defifie: V — T(V) ¢ RN by T(v) = (6y, (v))yley ThenT

is injective. Definal onT (V) by /(W) = 6x(T~*w). By the Hahn-Banach theorefhas a norm-preserving
extensmn//ext to RV. By the Riesz representation theorem, each linear furaitiomRN can be represented
by the inner product with a fixed vector. Thus, there existRN with

forall pin P7, and

N
Yex(W) = Z Zjw;
=1

and||z||(RN) = ||¢exd| If we adopt thd,-norm onRN, the dual norm will be thé;-norm. Thus||Z|rvy):-
=IZll1 = Wexdl = @1l = [I5xT 2.

Now, for anyp € V, by settingw = T(p), we have
N N
5x(p) = 5(T7w) = J(W) = JexiW) = > zw; = > 6, (p).
j=1 =1
This gives

N
PO = ) ZP(Y)), (6)
=1
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wherelzi| + - - - + |zn] = 16T LI

Note that
T = sup 1T
weTW) WIS
w0
loxpl
T j‘;‘(’v) T (Pl
w0
< sup |p(X)|
beV maxi=1,..n |P(Y))!
p#0
. (Il maxi—=1....n |P(Y;)I
= eV max-1,...n [P(Y;)l
p#0
= ||

2k-1
K .
! ) and our lemma follows immediately from (6) by lettiog{y;}) =

Thereforgzy| + - - - + |zn| < ( 2kk_
Zj, j = 1,...,N.

1.2 Radial Functions and Borel Measures

Our theory is based on a fundamental fact that any continconditionally positive definite radial function
corresponds to a unique positive Borel measure. Beforeisiiing this property in detail, we first clarify
some symbols and definitions. In this pag2denotes the space of all compactly supported and infinitely
differentiable complex-valued functions BA For each functiog in D, its Fourier transform is

36 = [ e o09dx
Then we have the following lemma which was introduced in [&]hodified by Madych and Nelson in [14].

Lemma 1.3 For any continuous conditionally positive definite funatio on R of order m, there are a
unique positive Borel measugeon R' ~ {0} and constantsa |r| = 2m such that for ally € D,

[rowmax = [1@-2@ 3, 03050

[r|<2m

+ > DO ™

[rl<2m

, Where for every choice of complex numbers|a| = m,

Z Z A48C,C5 = 0.

laj=m|[B|=m
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Herey is a function inD such thatl — y(£) has a zero of orde2m + 1 at£ = 0; both of the integrals

f EPdu@). | du()
0<[¢l<1 [€1>1

are finite. The choice of affects the value of the cffigients a for |r] < 2m.

2. MAINRESULT

In order to show our main result, we need some lemmas, inujutlie famous Stirling’s formula.
Stirling’'sFormula: n! ~ v2zn(g)".

The approximation is very reliable even for small For example, whem = 10, the relative error is
only 0.83%. The largenis, the better the approximationis. For further detailsyefer the reader to [5, 6].

Lemma 2.1 For any positive integer k,

VR

k
TSZ.

Proof. This inequality holds fok = 1 obviously. We proceed by induction.
VI2(k + 1)]! V(2k+2)! (2K . VK +2)(k + 1)

(k+1)! T K(k+1) K k+1
VKT +/(2k + 2)2 < o (k+2) kil
- k! k+1 ~ k+1 °

Now recall that the functioh defined in (4) is conditionally positive definite of ordar= 1+ 4. This
can be found in [3] and many relevant papers. Its Fouriesfoam [7] is

h(6) = 1, MoK o (i), (8)

wherel(4,n) > 0 is a constant depending drandn, and??v(t) ="K, (1), K, (t) being the modified Bessel
function of the second kind [1]. Then we have the followingtaa.

Lemma 2.2 Lethbe asin (4) and m be its order of conditional positiverdtfness. There exists a positive
constanjp such that

f e du(@) <1(4N) - V2T -n-an- - Ag - pF - K, )
Rn

for all integer k> 2m + 2 whereu was defined in Lemmal.@, denotes the volume of the unit ball ifi,R
is asin (4), and\q is a positive constant.

Proof. We first transform the integral of the left-hand side of theguality into a simpler form.

f e du(é)
Rn

f 14, n)7~<n_51 (clg)I¢™"dé (by (8) of this paper and Theorem5.2 of [14])
Rn

e [ e - K (i
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n+d 1 . .
< (A, n)c? \/_f|§|k—— de(Seetheexplanatlonafterthedeductlon.)
C .
n+d _\/— n+A n-1
= Il(a,ncz - Vv2r-n- fr_T. dr
( ) @n 0 \/— ecr
rk_'_n A-3
= 1(A,nc% V2r-n-ap- \/_f
n+Ad \/— 1 rk+n 7
= | 2 -n- —_—
(A,N)Ccz V2r-n-ay \/E ck+”'§'1£ p~ dr
oo K 1 _
= I(/l,n)\/Z~n-an~c”‘kf rgdrwhere1{=k+l23.
0

Note thatk > 2m+ 2 = 4 + 2 impliesk’ > %;5 > 0. In the preceding deduction we used Lemma 5.13
and 5.14 of [16] to build the inequality in the fourth line. &two lemmas were used faf¢| > 1 and

0 < ¢¢] < 1, respectively. Fogi¢| > 1, the inequality is obviously acceptable, with a very srgalh which
can be ignored. For & c¢|] < 1, it’s also suitable becauseis a very large number, making the integral
nearly zero wher is not close to zero. The only trouble forfcl¢|] < 1 is that ifc is extremely small,
the gap may be larger. However,dfis very small, the functiom in (4) is essentially the famous radial
function thin plate spline which is beyond the scope of tlaiggr. Moreovelk is a fixed number making the
influence of very smatt quite limited and can be ignored. In the forthcoming Thed@&hand Corollary2.4

it will be clear thatk — o as the essential fill-distanée— 0. In almost all casels >> 0.

Now we divide the proof into three cases. W&t = [k'] which is the smallest integer greater than or
equal tok’.

case 1. Assumk” > k. Letk” = k+ s. We first note tha}f()l re,idr ~ 0 becaus#&’ > 4.5. The largek’
is, the more accurate it is. Also, by the technique of integneby parts, we find

0o pk+l y o rk
ﬁ 7 dr = ( +1)fO gdr

Therefore v »
f Car< f odr=k = (k+ 9(k+5—1)- - (k+ 1)K

o € o €

and
00 rk +1 00 rk”+1
f er drsf dr= (K" + 1) = (k+ s+ 1)(k+9) - (k+ 2)(k+ LK.
0 0

Note that

(k+s+1)(k+9)---(k+2) k+s+1
k+9k+s-1)---(k+1)  k+1
The conditiork > 2m + 2 implies that

k+s+1<2m+3+s_ N S
k+1 -~ 2m+3 2m+ 3’

dr andf0 ™ dris less than or equal jo- (k+ 1) and

00 rk +1
f dr < Ag- P (k+ 1)!
0 e
if fo‘x’ r;,idr < Ag- p¥- K. The smallesk” is ky = 2m+ 2+ swhenko = 2m+ 2. Now,

f ﬁdr = kK!'=@2m+2+9@2m+1+9---(2m+ 3)(2m+ 2)!
0
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2m+2+9@2m+1+9)---(2m+ 3)
22 P

= Ag-p*™?.(2m+ 2)!

@2m+2+9(2m+1+9)---(2m+ 3)
p2m+2 :

22 . 2m+ 2)!

whereAq =

= Ao+ p - ko!

It follows that ;" &-dr < Ag - p* - k! for all k > 2m + 2.
case 2. Assumk’ < k. Letk” = k— swheres > 0. Then

fwr—wdr<fwr—k”dr—k”|—(k—s)|— 1 K
o € “Jo & " kk-1)---(k-s+1)

and
0o rk'+1 00 rk"+1
dr < f dr
fo € o €
1
= !’ | = — | = . |
K"+ 1) =(k-s+1)! K+ Dk (k—572) (k+ 1)
Note that
1 / 1
(k+21k---(k=s+2) k(k—1)---(k—-s+1)
k(k-1)---(k—s+1)
(K+1k---(k— s+ 2)
(k-s+1)
k+1
< 1
Letp = 1. Then

00 rk"+1
f dr < Ag - p*L- (k+ 1)!
A

if fo‘x’ r;,idr < Ag-p¥-K. The smallesk is kg = 2m+ 2. Hence the smalle&t’ is ki =ko—s=2m+2-s.
Now,

cx:rk(’)’
f—dr kK!'=@2m+2-9)! =(ko—9)!
o €
1
= oD o-s+1) "

Ao - p* - ko! whereAq =

1
2m+2)2m+1)---(2m-s+3)’

It follows that 3 &-dr < Ag - p* - k! for all k > 2m + 2.
case 3. Assumk’ = k. Then

00 rk’ 00 rk” 00 rk’+1
fo ?drsfo ?drzk! andﬁ 3 dr < (k+ 1)\

Letp = 1. Thenfooo re,idr < Ag - p*- k! for all k whereAg = 1.




Lin-Tian LutyStudies in Mathematical Sciences Vol.1 No.1, 2010

The lemma is now an immediate result of the three cases.

Remark 2.1:For the convenience of the reader we should express theatsAp andp in a clear form.

It's easily shown that

(ak” > kifand only ifn— 21 > 3,

(b)k” < kifandonlyifn—2 < 1, and

(ck” =kifandonlyifl<n-2<3,

wherek” andk are as in the proof of the lemma. The proof of (a) is as folloMste thatk” = [k’] where

K =k+ 242, Therefore&k” > kiff ™42 > 0. This gives thak” > kiff n— 1 > 3. The proofs for (b) and
(c) are similar and we omit them.We thus have the followirigations.

(@n-21> 3. Lets = [=4=2]. Then

and AO: (2m+2+S)(2m+1+s)(2m+ 3)

=1+
P 2m+ 3 22

(bn— A< 1. Lets=—[=42]. Then

1

p=1and A= 2m+2)2m+1)---(2m—-s+ 3)’

(€)1<n-2<3. We have
p=1and Ag=1

Before introducing our main theorem, we must introduce &tion space calledative space, denoted
by Cnh.m, for each conditionally positive definite radial functibof orderm. If

Dn={peD: fx"qb(x)dx: 0 forall ol <m}, D=CJ

, thenChn is the class of those continuous functidnghich satisfy

- 1/2
| f f(x)¢(x)d4sc(f){ f h(x—y)¢(x)¢(y)dxdy} , (10)

for some constard(f) and allg in Dy, The definition ofD can be seen in the beginning of 1.2flE Chm,

let || f|ln denote the smallest constanf) for which (10) is true. Thet - || is @ semi-norm an@yy, is a
semi-Hilbert space; in the case= 0 it is a norm and a Hilbert space respectively. For furtheaitle we
refer the reader to [13, 14]. This definition of native spa@sntroduced by Madych and Nelson, and
characterized by Luh in [9, 10]. Although there is an equaéldefinition [16] which is easier to handle,
we still adopt Madych and Nelson’s definition to show the atdthrespect for them.

Now we have come to the main theorem of this paper.

Theorem 2.3 Leth be asin (4). For any positive numbey there exist positive constaig ¢;, C, «’, 0 <
o’ < 1, completely determined by h ang, lsuch that for any n-dimensional simplex @ diameter b,
any f € Chm, and any0 < § < 8o, there is a number r satisfying the property ﬂg%t < r < bp and for
any n-dimensional simplex Q of diameter r X, there is an interpolating function($ as defined in (1)
such that )

() — S| < €2 Vo(@')? - [IFlln, (11)

forall x in Q, where C is defined by

2
C:= maX{Sp', 3—bo}, p, = '%
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wherep and ¢ appear in Lemma2.2 and (4) respectively. The functigrirgerpolates f at x,--- , Xn
which are evenly spaced points of degree kon Q as defined in the beginning of 1.1, witk-K-. Here
[ f|ln is the h-norm of f in the native space.

The numbersgy, c; andw’ are given by := m where m was introduced in (4);¢c= +I(1,n) -

(20)"%- yMan - ¢'2: VA V3C- v/(167)-t wheredis asin (4), (1, n) was introduced in (8)¢,, is the volume
of the unit ball in R, and Ay, together with the computation pf was defined in Lemma2.2 and the remark
following its proof,w’ := (%)1/30_

Proof. Let 5y, andC be as in the statement of the theorem. For ary®< 6o, we have O< § <
and 0< 3Cs < -L;. Since—L; < 1, there exists an integkrsuch that

_1
3CmD)

1<3Csk<2.

For suchk, 6k < 2 < by, 55 < k< %, and §'6k < 2 wherep’ = .

Letr = ok Then% < r < bg. For anyn simplexQ of diameter with verticesvo, vs, - - - , Vi, such that
Q < Qo, letX = {xy,---, xn} be the set of evenly spaced points of dedceel onQ whereN = dimP,_,.
By (9) and Lemma2.1,

For anyx € Q, choose arbitrarily an n simpleQ of diameterdiamQ = 6k with verticesvg, v1, ..., Vn
such thax € Q C Q. Letxq,..., Xy be evenly spaced points of degiee 1 onQ whereN = dimPF__,. By
(9) and Lemma2.1, whenevkr> m,

ks 12
{ . Wdﬂ‘f’}

VIQLn) - (20)Y4 - yRan - c¥2- ¢ Ao - (20)<. (12)
Theorem4.2 of [14] implies that

IA

1£(9 = SO0 < Gl fll - fRn ly - xdiol(y). (13)

whenevek > m, ando is any measure supported #rsuch that

fRﬂ pY)dor(y) = p(x). (14)

for all polynomialsp in P} ;. The facts(-) € Chm can be seenin [9, 10, 13, 14].

Let o be the measure supported pq, ..., Xy} as mentioned in Lemmal.2. We essentially need to
bound the quantity

= ¢ f ly - xdirl(y)
RN

only.
By Stirling’s Formula,

( 2(k-1)-1 ) (k-3
k-1 (k—1)(k—2)!
V2r(2k=3) - (2k — 3)*3
V2r(k=T1)- (k- 1)1 v2r(k=2)- (k- 2)<2
1 V-3 (2k — 3)2«3
V2r Vk—1vk=2 (k= 1)<k — 2)k-2
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11 Vk-3 (k2%
Vi VK- 1 vak— 4 (k- 1 3(k— 22
1 1 1. 22k—3 . (k - 1)k_2

Vr VK1 (k—2)2
i 1 22k—2
Vo Vk-1
.Thus fork mentioned as above ang defined in Lemmaz2.2, by Lemmal.2,
1/4 /2 ~—k k k 2(k_ 1) -1
< Vi( (@)Y yRanc! 2™ Ao(20)(6K) o1
< V@, n)(2n)Y* VyRanc2c ™ VAo (20) K (sK)K—= L 1 e

Vr \/_1
VIQL n)2) Y4 yranc2c ™  \/Ao(20)4(5K)¥ \}_ \/E4k_ when k is large

(In fact it holds fork > 2 because we already added a multiplying factor 2 in the
last expression.)

VIQL n)2n) Y4 \ranc? /Ao

¢

2p
W(T)
ViQL )2y «/nTvnc”/Z«F ( s )

e e 7(§)k
< I( n)(@2n)Y yhan (%)%
= e, v—&[(z)%
= () N ’]%wherew’z(:—i)%
< @) (27:)1/4«%&/2( Vf olw]?

Our theorem thus follows from (13).

Corollary 2.4 Let h be as in (4), andgbe any positive number. L€l be a subset of 'Rsatisfying the
property that for any x irf2, there exists an n-dimensional simplex @ diameter ly such that xc Qg C Q.
Then there exist positive constangs 0 < ' < 1, ¢; and C, completely determined by h angl $uch that
for any xe Q, any fe Chm, and any0 < 6 < do, there exists an interpolating functiofssatisfying

1(X) — S(X)| < ¢ V8(@') Y] lln, (15)

where||f || is the h-norm of f in the native spaCg,. The function €) is defined as in (1) and interpolates
fatX={xg, - ,xXn}, a set of evenly spaced points of degree k on an n simplex Q of diametes k
% < ké < bgand xe Q c Q. The values ofy, w’, ¢; and C are the same as Theorem2.3.

10
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Remark. Note that (15) holds not only for one poirt Once the simplex) is chosen, the error bound is
suitable for all points iQ. Also,k — o0 asé — 0to keep% < ké < bg. It means that the number of data
points will increase it decreases.

In the preceding theorem and corollary we didn’t mentionwedl-known fill-distance. In fact is in
spirit equivalent to the fill-distanad{Q, X) := SUReq Miny<i<n [ly—Xill whereX = {xy, - - - , Xn} @s mentioned
in the text. Note thad — 0 if and only ifd(Q, X) — 0. However we avoid using fill-distance because in
our approach the data points are not purely scattered.dp#per we adopt neither grid-data interpolating,
nor scattered data interpolating. Instead, the data paiettcated in a special way, called evenly spaced,
as defined in the beginning of 1.1. This to some extent seeims éodrawback. However the shape of the
simplex is very flexible. Consequently the centeys - - , Xy are nearly scattered in the domam This
requirement does not pose any trouble for us both theolgtaad practically. The evenly spaced centers
X1, -+, XN in the simplexQ are friendly and easily tractable.

As a last comment on Corollary2.4, it should be mentionetttfmdomair is very flexible. It can be
bounded or unbounded, closed or open or neither, and withoatsnor unsmooth boundary.

3. COMPARISON

The exponential-type error bound for (4) presented by LU 1nis of the form
(%) = S| < €107 [ Flln, (16)

wherec; = VI, n)(r/2)Y* yRanc2 VAo, 6 is equivalent to the fill-distance and
2\ T
o (3)

2 o
— / Myn LA
C max{z,o \Vnémn, 3b0}’ p=

, p andc being the same as this paply be the side length of a cube, apdbeing defined recursively by

where

v1=2, yn=20(1+yp1)if n>1

The constant; is almost the same as theg in (11). The numbeby plays the same role as thg of
Theorem?2.3. Howevey;, — oo rapidly ash — oo. This can be seen by

Y1=2,v2=12 y3=78, y4 =632 y5=633Q---

The fast growth ofy, forcese?™" and hence to grow rapidly as dimension — co. This means that the
crucial constant in (16) tends to 1 rapidly as — oo, making the error bound (16) meaningless for high
dimensions. Note that even for= 2 or 3,w is still too large.

The advantages of our new approach are:first, thes&ig (11) which contributes to the convergence
rate of the error bound as— 0, even for low dimensions; second, the crucial constarnn (11) is only
mildly dependent of dimensiom Althoughw’ dependends opwhich in turn depends on, the situation
is much better than before. In faet, can be made completely independentdfy changingl in (4) to
keepn — 2 < 3. This can be seen in the remark following Lemmaz2.2. In otferds, we have significantly
improved the error bound (16), even for low dimensions.

11
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