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A New Error Bound for Shifted Surface Spline
Interpolation

Lin-Tian Luh1

Abstract: Shifted surface spline is a frequently used radial functionfor scattered data interpola-
tion. The most frequently used error bounds for this radial function are the one raised by Wu and
Schaback in [17] and the one raised by Madych and Nelson in [14]. Both areO(dl) asd → 0,
wherel is a positive integer andd is the well-known fill-distance which roughly speaking mea-
sures the spacing of the data points. Then RBF people found that there should be an error bound
of the formO(ω

1
d ) because shifted surface spline is smooth and every smooth function shares

this property. The only problem was that the value of the cucial constantω was unknown. Re-
cently Luh raised an exponential-type error bound with convergence rateO(ω

1
d ) asd→ 0 where

0 < ω < 1 is a fixed constant which can be accurately computed [11]. Although the exponential-
type error bound converges much faster than the algebraic-type error bound, the constantω is
intensely influenced by the dimensionn in the senseω→ 1 rapidly asn→ ∞. Here the variable
x of both the interpolated and interpolating functions lies in Rn. In this paper we present an error
bound which isO(

√
dω′

1
d ) where 0< ω′ < 1 is a fixed constant for any fixedn, and is only mildly

influenced byn. In other words,ω′ → 1 very slowly asn→ ∞, andω′ << ω, especially for high
dimensions. Moreover,ω′ can be accurately computed without slight difficulty. This provides a
good error estimate for high-dimensional problems which are of growing importance.

Key Words: Radial Basis Function; Shifted Surface Spline; Error Bound; High-Dimensional
Approximation

1. INTRODUCTION

In the theory of radial basis functions, it’s well known thatany conditionally positive definite radial function
can form an interpolant for any set of scattered data. We makea simple sketch of this process as follows.

Supposeh is a continuous function onRn which is strictly conditionally positive definite of orderm. For
any set of data points (x j, f j), j = 1, . . . ,N, whereX = {x1, . . . , xN} is a subset ofRn and thef ′j s are real or
complex numbers, there is a unique function of the form

s(x) = p(x) +
N

∑

j=1

c jh(x− x j), (1)
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wherep(x) is a polynomial inPn
m−1, satisfying

N
∑

j=1

c jq(x j) = 0, (2)

for all polynomialsq in Pn
m−1 and

p(xi) +
N

∑

j=1

c jh(xi − x j) = fi , i = 1, . . . ,N, (3)

if X is a determining set forPn
m−1.

A complete treatment of this topic can be seen in [13] and manyother papers.

The functions(x) is called theh-spline interpolant of the data points and is of central importance in the
theory of radial basis functions. In this paperh always denotes a radial function in the sense that the value
of h(x) is completely determined by the norm|x| of x. Here,Pn

m−1 denotes the class of those n-variable
polynomials of degree not more thanm− 1.

In this paper we are mainly interested in a radial function called shifted surface spline defined by

h(x) := (−1)m(|x|2 + c2)
λ
2 log(|x|2 + c2)

1
2 , λ ∈ Z+, m= 1+

λ

2
, c > 0,

x ∈ Rn, λ, n even, (4)

where|x| is the Euclidean norm ofx, andλ, c are constants. In fact, the definition of shifted surface spline
covers odd dimensions. For odd dimensions, it’s of the form

h(x) := (−1)⌈λ−
n
2 ⌉(|x|2 + c2)λ−

n
2 , n odd, λ ∈ Z+ = {1, 2, 3, . . .}

andλ >
n
2
. (5)

However, this is just multiquadric and we treated it in another paper [12]. Therefore we will not discuss it.
Instead, we will focus on (4) and even dimensions only.

1.1 Polynomials and Simplices

Let E denote an n-dimensional simplex [4] with verticesv1, . . . , vn+1. If we adopt barycentric coordinates,
then any pointx ∈ E can be written as a convex combination of the vertices:

x =
n+1
∑

i=1

λivi ,

n+1
∑

i=1

λi = 1, λi ≥ 0.

We define the “evenly spaced” points of degree k to be those points whose barycentric coordinates are of
the form

(k1/k, k2/k, . . . , kn+1/k), ki nonnegative integers and k1 + · · · + kn+1 = k.

It’s easily seen that the number of such points is exactlydimPn
k, i.e., the dimension ofPn

k. In this section
we use N to denotedimPn

k. What’s noteworthy is that our notion of being evenly spacedis very different
from the notion of grid. Moreover the shape of the simplex is determined by its vertices and is very flexible.
Therefore the distribution of the evenly spaced points has alot of freedom.

The above-defined evenly spaced points can induce a polynomial interpolation process as follows. Let
x1, . . . , xN be the evenly spaced points inE of degree k. The associated Lagrange polynomialsl i of degree

2
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k are defined by the conditionl i(x j) = δi j , 1 ≤ i, j ≤ N. For any continuous mapf ∈ C(E), (Πk f )(x) :=
∑N

i=1 f (xi)l i(x) is its interpolating polynomial. If both spaces are equipped with the supremum norm, the
mapping

Πk : C(E)→ Pn
k

has a well-known norm

‖Πk‖ = max
x

N
∑

i=1

|l i(x)|

which is the maximum value of the famous Lebesgue function. It’s easily seen that for anyp ∈ Pn
k,

‖p‖∞ := max
x∈E
|p(x)| ≤ ‖Πk‖ max

1≤i≤N
|p(xi)|.

The next result is important in our construction of the errorbound, and we cite it directly from [2].

Lemma 1.1 For the above evenly spaced points{x1, . . . , xN}, ‖Πk‖ ≤
(

2k− 1
k

)

. Moreover, as n→

∞, ‖Πk‖ →
(

2k− 1
k

)

.

Then we need another lemma which must be proven because it plays a crucial role in our development.

Lemma 1.2 Let Q ⊆ Rn be an n simplex in Rn and Y be the set of evenly spaced points of degree k in Q.
Then, for any point x in Q, there is a measureσ supported on Y such that

∫

p(y)dσ(y) = p(x)

for all p in Pn
k, and

∫

d|σ|(y) ≤
(

2k− 1
k

)

.

Proof. Let Y = {y1, . . . , yN} be the set of evenly spaced points of degreek in Q. DenotePn
k by V. For any

x ∈ Q, let δx be the point-evaluation functional. DefineT : V → T(V) ⊆ RN by T(v) = (δyi (v))yi∈Y. ThenT
is injective. Definẽψ onT(V) by ψ̃(w) = δx(T−1w). By the Hahn-Banach theorem,ψ̃ has a norm-preserving
extensionψ̃ext to RN. By the Riesz representation theorem, each linear functional onRN can be represented
by the inner product with a fixed vector. Thus, there existsz ∈ RN with

ψ̃ext(w) =
N

∑

j=1

zjw j

and‖z‖(RN)∗ = ‖ψ̃ext‖. If we adopt thel∞-norm onRN, the dual norm will be thel1-norm. Thus‖z‖(RN))∗

= ‖z‖1 = ‖ψ̃ext‖ = ‖ψ̃‖ = ‖δxT−1‖.
Now, for anyp ∈ V, by settingw = T(p), we have

δx(p) = δx(T−1w) = ψ̃(w) = ψ̃ext(w) =
N

∑

j=1

zjw j =

N
∑

j=1

zjδy j (p).

This gives

p(x) =
N

∑

j=1

zj p(y j), (6)
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where|z1| + · · · + |zN | = ‖δxT−1‖.
Note that

‖δxT
−1‖ = sup

w ∈ T(V)
w , 0

‖δxT−1(w)‖
‖w‖RN

= sup
w ∈ T(V)

w , 0

|δxp|
‖T(p)‖RN

≤ sup
p ∈ V
p , 0

|p(x)|
maxj=1,...,N |p(y j)|

≤ sup
p ∈ V
p , 0

‖Πk‖maxj=1,...,N |p(y j)|
maxj=1,...,N |p(y j)|

= ‖Πk‖

≤
(

2k− 1
k

)

.

Therefore|z1| + · · · + |zN | ≤
(

2k− 1
k

)

and our lemma follows immediately from (6) by lettingσ({y j}) =

zj , j = 1, . . . ,N.

1.2 Radial Functions and Borel Measures

Our theory is based on a fundamental fact that any continuousconditionally positive definite radial function
corresponds to a unique positive Borel measure. Before discussing this property in detail, we first clarify
some symbols and definitions. In this paperD denotes the space of all compactly supported and infinitely
differentiable complex-valued functions onRn. For each functionφ inD, its Fourier transform is

φ̂(ξ) =
∫

e−i<x,ξ>φ(x)dx.

Then we have the following lemma which was introduced in [8] but modified by Madych and Nelson in [14].

Lemma 1.3 For any continuous conditionally positive definite function h on Rn of order m, there are a
unique positive Borel measureµ on Rn ∼ {0} and constants ar , |r | = 2m such that for allψ ∈ D,

∫

h(x)ψ(x)dx =

∫

{ψ̂(ξ) − χ̂(ξ)
∑

|r |<2m

Dr ψ̂(0)
ξr

r!
}dµ(ξ)

+
∑

|r |≤2m

Dr ψ̂(0)
ar

r!
(7)

, where for every choice of complex numbers cα, |α| = m,
∑

|α|=m

∑

|β|=m

aα+βcαcβ ≥ 0.
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Hereχ is a function inD such that1− χ̂(ξ) has a zero of order2m+ 1 at ξ = 0; both of the integrals
∫

0<|ξ|<1
|ξ|2mdµ(ξ),

∫

|ξ|≥1
dµ(ξ)

are finite. The choice ofχ affects the value of the coefficients ar for |r | < 2m.

2. MAIN RESULT

In order to show our main result, we need some lemmas, including the famous Stirling’s formula.

Stirling’s Formula: n! ∼
√

2πn( n
e)n.

The approximation is very reliable even for smalln. For example, whenn = 10, the relative error is
only 0.83%. The largern is, the better the approximation is. For further details, werefer the reader to [5, 6].

Lemma 2.1 For any positive integer k, √
(2k)!
k!

≤ 2k.

Proof. This inequality holds fork = 1 obviously. We proceed by induction.
√

[2(k+ 1)]!
(k+ 1)!

=

√
(2k+ 2)!

k!(k+ 1)
=

√
(2k)!
k!

·
√

(2k+ 2)(2k+ 1)
k+ 1

≤
√

(2k)!
k!

·
√

(2k+ 2)2

k+ 1
≤ 2k · (2k+ 2)

k+ 1
= 2k+1.

Now recall that the functionh defined in (4) is conditionally positive definite of orderm = 1+ λ
2 . This

can be found in [3] and many relevant papers. Its Fourier transform [7] is

ĥ(θ) = l(λ, n)|θ|−λ−nK̃ n+λ
2

(c|θ|), (8)

wherel(λ, n) > 0 is a constant depending onλ andn, andK̃ν(t) = tνKν(t),Kν(t) being the modified Bessel
function of the second kind [1]. Then we have the following lemma.

Lemma 2.2 Let h be as in (4) and m be its order of conditional positive definiteness. There exists a positive
constantρ such that

∫

Rn
|ξ|kdµ(ξ) ≤ l(λ, n) ·

√
2π · n · αn · cλ−k · ∆0 · ρk · k!, (9)

for all integer k≥ 2m+ 2 whereµ was defined in Lemma1.3,αn denotes the volume of the unit ball in Rn, c
is as in (4), and∆0 is a positive constant.

Proof. We first transform the integral of the left-hand side of the inequality into a simpler form.
∫

Rn
|ξ|kdµ(ξ)

=

∫

Rn
|ξ|kl(λ, n)K̃ n+λ

2
(c|ξ|)|ξ|−λ−ndξ (by (8) of this paper and Theorem5.2 of [14])

= l(λ, n)c
n+λ
2

∫

Rn
|ξ|k− n+λ

2 · K n+λ
2

(c|ξ|)dξ

5
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≤ l(λ, n)c
n+λ
2

√
2π

∫

Rn
|ξ|k− n+λ

2 · 1
√

c|ξ| · ec|ξ|
dξ (See the explanation after the deduction.)

= l(λ, n)c
n+λ
2 ·
√

2π · n · αn

∫ ∞

0
rk− n+λ

2 · rn−1

√
cr · ecr

dr

= l(λ, n)c
n+λ
2

√
2π · n · αn ·

1
√

c

∫ ∞

0

rk+ n−λ−3
2

ecr
dr

= l(λ, n)c
n+λ
2

√
2π · n · αn ·

1
√

c
· 1

ck+ n−λ−1
2

∫ ∞

0

rk+ n−λ−3
2

er
dr

= l(λ, n)
√

2π · n · αn · cλ−k
∫ ∞

0

rk′

er
dr where k′ = k+

n− λ − 3
2

.

Note thatk ≥ 2m+ 2 = 4 + λ impliesk′ ≥ n+λ+5
2 > 0. In the preceding deduction we used Lemma 5.13

and 5.14 of [16] to build the inequality in the fourth line. The two lemmas were used forc|ξ| ≥ 1 and
0 < c|ξ| ≤ 1, respectively. Forc|ξ| ≥ 1, the inequality is obviously acceptable, with a very smallgap which
can be ignored. For 0< c|ξ| ≤ 1, it’s also suitable becausek is a very large number, making the integral
nearly zero whenc is not close to zero. The only trouble for 0< c|ξ| ≤ 1 is that ifc is extremely small,
the gap may be larger. However, ifc is very small, the functionh in (4) is essentially the famous radial
function thin plate spline which is beyond the scope of this paper. Moreover,k is a fixed number making the
influence of very smallc quite limited and can be ignored. In the forthcoming Theorem2.3 and Corollary2.4
it will be clear thatk→ ∞ as the essential fill-distanceδ→ 0. In almost all casesk >> 0.

Now we divide the proof into three cases. Letk′′ = ⌈k′⌉ which is the smallest integer greater than or
equal tok′.

case 1. Assumek′′ > k. Let k′′ = k+ s. We first note that
∫ 1

0
rk′

er dr ∼ 0 becausek′ ≥ 4.5. The largerk′

is, the more accurate it is. Also, by the technique of integration by parts, we find
∫ ∞

0

rk+1

er
dr = (k+ 1)

∫ ∞

0

rk

er
dr.

Therefore
∫ ∞

0

rk′

er
dr ≤

∫ ∞

0

rk′′

er
dr = k′′! = (k+ s)(k+ s− 1) · · · (k+ 1)k!

and
∫ ∞

0

rk′+1

er
dr ≤

∫ ∞

0

rk′′+1

er
dr = (k′′ + 1)! = (k+ s+ 1)(k+ s) · · · (k+ 2)(k+ 1)k!.

Note that
(k+ s+ 1)(k+ s) · · · (k+ 2)
(k+ s)(k+ s− 1) · · · (k+ 1)

=
k+ s+ 1

k+ 1
.

The conditionk ≥ 2m+ 2 implies that

k+ s+ 1
k+ 1

≤ 2m+ 3+ s
2m+ 3

= 1+
s

2m+ 3
.

Let ρ = 1+ s
2m+3. Then the ratio of

∫ ∞
0

rk′′+1

er dr and
∫ ∞

0
rk′′

er dr is less than or equal toρ · (k+ 1) and

∫ ∞

0

rk′′+1

er
dr ≤ ∆0 · ρk+1 · (k+ 1)!

if
∫ ∞

0
rk′′

er dr ≤ ∆0 · ρk · k!. The smallestk′′ is k′′0 = 2m+ 2+ swhenk0 = 2m+ 2. Now,

∫ ∞

0

rk′′0

er
dr = k′′0 ! = (2m+ 2+ s)(2m+ 1+ s) · · · (2m+ 3)(2m+ 2)!

6
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=
(2m+ 2+ s)(2m+ 1+ s) · · · (2m+ 3)

ρ2m+2
· ρ2m+2 · (2m+ 2)!

= ∆0 · ρ2m+2 · (2m+ 2)!

where∆0 =
(2m+ 2+ s)(2m+ 1+ s) · · · (2m+ 3)

ρ2m+2
.

= ∆0 · ρk0 · k0!

It follows that
∫ ∞

0
rk′

er dr ≤ ∆0 · ρk · k! for all k ≥ 2m+ 2.

case 2. Assumek′′ < k. Let k′′ = k− swheres> 0. Then
∫ ∞

0

rk′

er
dr ≤

∫ ∞

0

rk′′

er
dr = k′′! = (k− s)! =

1
k(k− 1) · · · (k− s+ 1)

· k!

and
∫ ∞

0

rk′+1

er
dr ≤

∫ ∞

0

rk′′+1

er
dr

= (k′′ + 1)! = (k− s+ 1)! =
1

(k+ 1)k · · · (k− s+ 2)
· (k+ 1)!.

Note that
{

1
(k+ 1)k · · · (k− s+ 2)

/
1

k(k− 1) · · · (k− s+ 1)

}

=
k(k− 1) · · · (k− s+ 1)
(k+ 1)k · · · (k− s+ 2)

=
(k− s+ 1)

k+ 1
≤ 1.

Let ρ = 1. Then
∫ ∞

0

rk′′+1

er
dr ≤ ∆0 · ρk+1 · (k+ 1)!

if
∫ ∞
0

rk′′

er dr ≤ ∆0 · ρk · k!. The smallestk is k0 = 2m+ 2. Hence the smallestk′′ is k′′0 = k0 − s= 2m+ 2− s.
Now,

∫ ∞

0

rk′′0

er
dr = k′′0 ! = (2m+ 2− s)! = (k0 − s)!

=
1

k0(k0 − 1) · · · (k0 − s+ 1)
· (k0!)

= ∆0 · ρk0 · k0! where∆0 =
1

(2m+ 2)(2m+ 1) · · · (2m− s+ 3)
.

It follows that
∫ ∞

0
rk′

er dr ≤ ∆0 · ρk · k! for all k ≥ 2m+ 2.

case 3. Assumek′′ = k. Then
∫ ∞

0

rk′

er
dr ≤

∫ ∞

0

rk′′

er
dr = k! and

∫ ∞

0

rk′+1

er
dr ≤ (k+ 1)!.

Let ρ = 1. Then
∫ ∞
0

rk′

er dr ≤ ∆0 · ρk · k! for all k where∆0 = 1.

7
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The lemma is now an immediate result of the three cases.

Remark 2.1:For the convenience of the reader we should express the constants∆0 andρ in a clear form.
It’s easily shown that
(a)k′′ > k if and only if n− λ > 3,
(b)k′′ < k if and only if n− λ ≤ 1, and
(c)k′′ = k if and only if 1< n− λ ≤ 3,
wherek′′ andk are as in the proof of the lemma. The proof of (a) is as follows.Note thatk′′ = ⌈k′⌉ where
k′ = k+ n−λ−3

2 . Thereforek′′ > k iff n−λ−3
2 > 0. This gives thatk′′ > k iff n− λ > 3. The proofs for (b) and

(c) are similar and we omit them.We thus have the following situations.
(a)n− λ > 3. Let s= ⌈ n−λ−3

2 ⌉. Then

ρ = 1+
s

2m+ 3
and ∆0 =

(2m+ 2+ s)(2m+ 1+ s) · · · (2m+ 3)
ρ2m+2

.

(b)n− λ ≤ 1. Let s= −⌈ n−λ−3
2 ⌉. Then

ρ = 1 and ∆0 =
1

(2m+ 2)(2m+ 1) · · · (2m− s+ 3)
.

(c)1< n− λ ≤ 3. We have
ρ = 1 and ∆0 = 1.

Before introducing our main theorem, we must introduce a function space callednative space, denoted
byCh,m, for each conditionally positive definite radial functionh of orderm. If

Dm = {φ ∈ D :
∫

xαφ(x)dx= 0 f or all |α| < m}, D = C∞0

, thenCh.m is the class of those continuous functionsf which satisfy

∣

∣

∣

∣

∣

∫

f (x)φ(x)dx
∣

∣

∣

∣

∣

≤ c( f )

{
∫

h(x− y)φ(x)φ(y)dxdy

}1/2

, (10)

for some constantc( f ) and allφ inDm. The definition ofD can be seen in the beginning of 1.2. Iff ∈ Ch,m,
let ‖ f ‖h denote the smallest constantc( f ) for which (10) is true. Then‖ · ‖h is a semi-norm andCh,m is a
semi-Hilbert space; in the casem = 0 it is a norm and a Hilbert space respectively. For further details, we
refer the reader to [13, 14]. This definition of native space was introduced by Madych and Nelson, and
characterized by Luh in [9, 10]. Although there is an equivalent definition [16] which is easier to handle,
we still adopt Madych and Nelson’s definition to show the author’s respect for them.

Now we have come to the main theorem of this paper.

Theorem 2.3 Let h be as in (4). For any positive number b0, there exist positive constantsδ0, c1, C, ω′, 0 <
ω′ < 1, completely determined by h and b0, such that for any n-dimensional simplex Q0 of diameter b0,
any f ∈ Ch,m, and any0 < δ ≤ δ0, there is a number r satisfying the property that1

3C ≤ r ≤ b0 and for
any n-dimensional simplex Q of diameter r, Q⊆ Q0, there is an interpolating function s(·) as defined in (1)
such that

| f (x) − s(x)| ≤ c1

√
δ(ω′)

1
δ · ‖ f ‖h, (11)

for all x in Q, where C is defined by

C := max

{

8ρ′,
2

3b0

}

, ρ′ =
ρ

c

8
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whereρ and c appear in Lemma2.2 and (4) respectively. The function s(·) interpolates f at x1, · · · , xN

which are evenly spaced points of degree k− 1 on Q as defined in the beginning of 1.1, with k= r
δ
. Here

‖ f ‖h is the h-norm of f in the native space.

The numbersδ0, c1 andω′ are given byδ0 := 1
3C(m+1) where m was introduced in (4); c1 :=

√
l(λ, n) ·

(2π)1/4 · √nαn ·cλ/2 ·
√
∆0

√
3C ·

√

(16π)−1 whereλ is as in (4), l(λ, n) was introduced in (8),αn is the volume
of the unit ball in Rn, and∆0, together with the computation ofρ, was defined in Lemma2.2 and the remark
following its proof;ω′ := ( 2

3)1/3C.

Proof. Let δ0, andC be as in the statement of the theorem. For any 0< δ ≤ δ0, we have 0< δ ≤ 1
3C(m+1)

and 0< 3Cδ ≤ 1
m+1. Since 1

m+1 < 1, there exists an integerk such that

1 ≤ 3Cδk ≤ 2.

For suchk, δk ≤ 2
3C ≤ b0,

1
3Cδ ≤ k ≤ b0

δ
, and 8ρ′δk ≤ 2

3 whereρ′ = ρ

c .

Let r = δk. Then 1
3C ≤ r ≤ b0. For anyn simplexQ of diameterr with verticesv0, v1, · · · , vn such that

Q ⊆ Q0, let X := {x1, · · · , xN} be the set of evenly spaced points of degreek− 1 onQ whereN = dimPn
k−1.

By (9) and Lemma2.1,

For anyx ∈ Ω, choose arbitrarily an n simplexQ of diameterdiamQ= δk with verticesv0, v1, . . . , vn

such thatx ∈ Q ⊆ Ω. Let x1, . . . , xN be evenly spaced points of degreek− 1 onQ whereN = dimPn
k−1. By

(9) and Lemma2.1, wheneverk > m,

ck :=

{∫

Rn

|ξ|2k

(k!)2
dµ(ξ)

}1/2

≤
√

l(λ, n) · (2π)1/4 ·
√

nαn · cλ/2 · c−k ·
√

∆0 · (2ρ)k. (12)

Theorem4.2 of [14] implies that

| f (x) − s(x)| ≤ ck‖ f ‖h ·
∫

Rn
|y− x|kd|σ|(y), (13)

wheneverk > m, andσ is any measure supported onX such that
∫

Rn
p(y)dσ(y) = p(x), (14)

for all polynomialsp in Pn
k−1. The facts(·) ∈ Ch,m can be seen in [9, 10, 13, 14].

Let σ be the measure supported on{x1, . . . , xN} as mentioned in Lemma1.2. We essentially need to
bound the quantity

I = ck

∫

Rn
|y− x|kd|σ|(y)

only.

By Stirling’s Formula,

(

2(k− 1)− 1
k− 1

)

=
(2k− 3)!

(k− 1)!(k− 2)!

∼
√

2π(2k− 3) · (2k− 3)2k−3

√
2π(k− 1) · (k− 1)k−1 ·

√
2π(k− 2) · (k− 2)k−2

=
1
√

2π

√
2k− 3

√
k− 1

√
k− 2

(2k− 3)2k−3

(k− 1)k−1(k− 2)k−2

9
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≤ 1
√
π

1
√

k− 1

√
2k− 3
√

2k− 4

(2k− 2)2k−3

(k− 1)k−1(k− 2)k−2

≤ 1
√
π

1
√

k− 1
· 1 · 22k−3 · (k− 1)k−2

(k− 2)k−2

≤ 1
√
π

1
√

k− 1
22k−2

.Thus fork mentioned as above and∆0 defined in Lemma2.2, by Lemma1.2,

I ≤
√

l(λ, n)(2π)1/4√nαncλ/2c−k
√

∆0(2ρ)k(δk)k

(

2(k− 1)− 1
k− 1

)

≤
√

l(λ, n)(2π)1/4√nαncλ/2c−k
√

∆0(2ρ)k(δk)k 1
√
π

1
√

k− 1
22(k−1)

∼
√

l(λ, n)(2π)1/4√nαncλ/2c−k
√

∆0(2ρ)k(δk)k 1
√
π

1
√

k
4k−1 when k is large

(In fact it holds fork ≥ 2 because we already added a multiplying factor 2 in the

last expression.)

=
√

l(λ, n)(2π)1/4√nαncλ/2
√

∆0
1
√
π

1
√

k

(

2ρδk
c

)k 4k

4

=
√

l(λ, n)(2π)1/4√nαncλ/2
√

∆0
1
√

16π

1
√

k

(

8ρδk
c

)k

≤
√

l(λ, n)(2π)1/4√nαncλ/2
√

∆0
1
√

16π

1
√

k

(

2
3

)k

≤
√

l(λ, n)(2π)1/4√nαncλ/2
√

∆0
1
√

16π

1
√

k

(

2
3

)
1

3Cδ

=
√

l(λ, n)(2π)1/4√nαncλ/2
√

∆0
1
√

16π

1
√

k

















(

2
3

)
1

3C

















1
δ

=
√

l(λ, n)(2π)1/4√nαncλ/2
√

∆0
1
√

16π

1
√

k
[ω′]

1
δ whereω′ =

(

2
3

)
1

3C

≤
√

l(λ, n)(2π)1/4√nαncλ/2
√

∆0
1
√

16π

√
3Cδ[ω′]

1
δ

=
√

l(λ, n)(2π)1/4√nαncλ/2
√

∆0

√
3C
√

16π

√
δ[ω′]

1
δ

Our theorem thus follows from (13).

Corollary 2.4 Let h be as in (4), and b0 be any positive number. LetΩ be a subset of Rn satisfying the
property that for any x inΩ, there exists an n-dimensional simplex Q0 of diameter b0 such that x∈ Q0 ⊆ Ω.
Then there exist positive constantsδ0, 0 < ω′ < 1, c1 and C, completely determined by h and b0, such that
for any x∈ Ω, any f ∈ Ch,m, and any0 < δ ≤ δ0, there exists an interpolating function s(·) satisfying

| f (x) − s(x)| ≤ c1

√
δ(ω′)1/δ‖ f ‖h, (15)

where‖ f ‖h is the h-norm of f in the native spaceCh,m. The function s(·) is defined as in (1) and interpolates
f at X = {x1, · · · , xN}, a set of evenly spaced points of degree k− 1 on an n simplex Q of diameter kδ,
1

3C ≤ kδ ≤ b0 and x∈ Q ⊂ Ω. The values ofδ0, ω
′, c1 and C are the same as Theorem2.3.

10
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Remark. Note that (15) holds not only for one pointx. Once the simplexQ is chosen, the error bound is
suitable for all points inQ. Also, k→ ∞ asδ → 0 to keep 1

3C ≤ kδ ≤ b0. It means that the number of data
points will increase ifδ decreases.

In the preceding theorem and corollary we didn’t mention thewell-known fill-distance. In factδ is in
spirit equivalent to the fill-distanced(Q,X) := supy∈Q min1≤i≤N ‖y−xi‖whereX = {x1, · · · , xN} as mentioned
in the text. Note thatδ → 0 if and only if d(Q,X) → 0. However we avoid using fill-distance because in
our approach the data points are not purely scattered. In this paper we adopt neither grid-data interpolating,
nor scattered data interpolating. Instead, the data pointsare located in a special way, called evenly spaced,
as defined in the beginning of 1.1. This to some extent seems tobe a drawback. However the shape of the
simplex is very flexible. Consequently the centersx1, · · · , xN are nearly scattered in the domainΩ. This
requirement does not pose any trouble for us both theoretically and practically. The evenly spaced centers
x1, · · · , xN in the simplexQ are friendly and easily tractable.

As a last comment on Corollary2.4, it should be mentioned that the domainΩ is very flexible. It can be
bounded or unbounded, closed or open or neither, and with a smooth or unsmooth boundary.

3. COMPARISON

The exponential-type error bound for (4) presented by Luh in[11] is of the form

| f (x) − s(x)| ≤ c1ω
1
δ ‖ f ‖h, (16)

wherec1 =
√

l(λ, n)(π/2)1/4
√

nαncλ/2
√
∆0, δ is equivalent to the fill-distance and

ω =

(

2
3

)
1

3Cγn

where

C = max

{

2ρ′
√

ne2nγn ,
2

3b0

}

, ρ′ =
ρ

c

, ρ andc being the same as this paper,b0 be the side length of a cube, andγn being defined recursively by

γ1 = 2, γn = 2n(1+ γn−1) i f n > 1.

The constantc1 is almost the same as thec1 in (11). The numberb0 plays the same role as theb0 of
Theorem2.3. However,γn→ ∞ rapidly asn→ ∞. This can be seen by

γ1 = 2, γ2 = 12, γ3 = 78, γ4 = 632, γ5 = 6330, · · ·

The fast growth ofγn forcese2nγn and henceC to grow rapidly as dimensionn→ ∞. This means that the
crucial constantω in (16) tends to 1 rapidly asn→ ∞, making the error bound (16) meaningless for high
dimensions. Note that even forn = 2 or 3,ω is still too large.

The advantages of our new approach are:first, there is
√
δ in (11) which contributes to the convergence

rate of the error bound asδ → 0, even for low dimensions; second, the crucial constantω′ in (11) is only
mildly dependent of dimensionn. Althoughω′ dependends onρ which in turn depends onn, the situation
is much better than before. In fact,ω′ can be made completely independent ofn by changingλ in (4) to
keepn− λ ≤ 3. This can be seen in the remark following Lemma2.2. In otherwords, we have significantly
improved the error bound (16), even for low dimensions.
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