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Abstract

In this paper, A classification of nonoscillatory solutidrtlee quasilinear dynamic equation on time scales
are considered, by Schauder, Knaster’s fixed-point thepBmme necessary andfBaient conditions for
nonoscillation of the dynamic equations @rare established.Our results as special case iherk and

T = N, involve and improve some known results.
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1. INTRODUCTION

The theory of time scales, which has recently received &flattention, was introduced by Stefan Hilger in
his Ph.D.Thesis in 1988 in order to unify continuous andréigcanalysid!. A time scaleT, is an arbitrary
nonempty closed subset of the reals, and the cases wheimthisdale is equal to the reals or to the integers
represent the classical theories dfeliential and of dference equations. Many other interesting time scales
exist, and they give rise to many applicatibhs

In recent years, there has been much research activity mangehe oscillation and nonoscillation of
solutions of various equations . We refer the reader to tpega >’! and the reference cited therein.

In this paper, we consider a quasilinear dynamic equation

(e ON* + f(ty(O() = 0. 1)

Wheret € [tp, ) = Tg € T. the following conditions is always satisfied
(H1) : ¢ € Ciy(T, R) is a strictly increasing and odd function, apiis submultiplicative, i.e.

(xy) < ¢(X)o(y), Xy = 0.
(H2) : g € Cra(To. RY), and limg(t) = co.

(H3) : f € Cg(To X R R), for each fixed >t > 0, f(t,y) is increasing iry, andyf(t,y) > 0,y # 0.
The behaviors of the solution for the equation

(POX*(1)* + at)x(o(t)) = 0.
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have been studied by many authors, such as A.D. Medico®t 4t is clear that the equation is a special
case of Eq.(2).

2. NONOSCILLATION THEOREMS

Lemma 2.1(see[6]). If¢ is submultiplicative on [Deo), then its inverse functio® is supermultiplicative
on [0, ),i.e. d(xy) > ©(X)D(y), X,y > 0. Moreover,® satisfiesb(%) < %, for x,y > 0.

Lemma 2.2. If y(t) is a nonoscillatory solution of (1), they(t)y*(t) > 0, and there exist two positive
constant®,, ¢y, such that

C1 < y(t) I< cot

for t large enough.
Proof: Without loss of generality, we may assume tha} > O, for t > t; > to, it follows from

(e O)* = ~f(t.y(9(V)) <0

andg¢ is strictly increasing thap(y*(t)) is strictly decreasing ortd, o). Thus,y*(t) is strictly decreasing.
yA(t) is eventually positive, say(t) > 0, fort > t;, wheret; is large enough. Otherwise, if there exists a
t* such that®(t*) = 0, thent > t*,y*(t) < 0, Thus, it is easy to see thgt) must become negative, which
contradicts our assumption.

Sincey?(t) < y*(ty).for t > t, integrating it fromt; to t,we obtain

y(t) — y(ty) < y*(t)(t - to)

y(t) < y(ta) + Y (t)(t - tr) < Cot

for somec, > 0. On the other hand, singé(t) > 0, fort > ty,there exists @& > 0 such thay(t) > ¢, for
t > t; . Hence, we complete the proof.

It follows from Lemma 2.2 and its proof that one and only onéheffollowing three possibilities occurs
for the asymptotic behavior of any nonoscillatory solutygt) of (1):
(1 :lim # = const # O;

t—oco
(1) : lim X2 = 0, lim | y(t) |= oo;
(- Itim y(t) = const # O.
Theorem 2.1.The equation (1) has a positive solution of typéf and only if

00

f | f(t,cg(t)) | At < oo, 2)

to

for some constart # 0.

Proof: (i) Necessity. Suppose that (1) has a nonoscillatory smiuwtf typel;. We may assume tha(t)
is eventually positive. Sincgt) — oo, ast — oo, it follows from Lemma 2.2 that > t;,y(t) > 0, and
yA(t) > 0. Since

lim M = const # 0,
t—oo g(t)
there exist threey, ¢, > 0, t, > t; such that
c1g(t) < y(9(t)) < c20(t) )

An integration of (1) yields

t
f f(s Y(9(9))As = ¢(y*(t2)) — p(Y (1) < p(Y*(t2)).
t2
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which implies

0< [ f(sy(9(9)))As< (4)
/

It follows thatf f(s cg(s))As < co. A similar argument holds i(t) < O.

t2
(ii) Sufficiency. Without loss of generality, we may assume that tmstamtc > 0 in (2) is positive. Let
k > 0 be a constant such thd&(2k) < c. it follows from (2) that there exists > to large enough such that

0< [ f(tcg)At<k (5)
/

Definet, = min{tl,igtf g(t)} > to,

0< f f(t, cg()At < k
t.

Define a set
Y = {y € Cig[t., 00) : D(K)(t - tp); < Y(t) < P2K)(t - t1),t > L.}
where
_ t—1y, t>t
(t-t), _{ 0, t<t<ty.

and Y is a set with partial ordet: y; <y, © yi(t) < yo(t), t > t*. Clearly, for allA c Y, there exists
inf Aand supA, Let F be a mapping defined by

(Fy)(®) = f Ok + f fey@e)Ar)As  t>h

0, . <t<tg

It follows from (5), Lemma 2.1 and

t t
f D(K)As < (Fy)(t) < f D2KAS t>t
ty t

OR)(t—t1) < (FY)() < D(2K)(t-11) t=1

thatFY C Y, and F is rd-continuous and increasing. Therefore, byihaster- s fixed-point theorem, there
exists a fixed poiny € Y, such thafFy =, i.e.,

t oo

y(t) = f(D(k+ff(0',y(g(0')))A0')AS t>ty

t

Itis clear thaty(t) is a positive solution of Eq.(1) aqd Iir%{&tr) = ®(k) = const. This completes the proof.
Theorem2.2.The equation (1) has a positive solution of type (l11) if andyoif

00

fd)(f| f(s,c)|AS)At <0, Cc#0 (6)
t

o
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Proof: (i) Necessity. Suppose that (1) has a positive solugionof type (ll1). it follows from Lemma 2.2
thatt > t1,y(t) > 0, andy(t) > O.wheret; is large enough. Sincte liy(t) = const # 0O, there exist three

C1,C2 > 0,1t > t; such that
casyglt) <c txtp (7)

Sincey?(t) — 0 ast — oo, integrating (1) from t ta, we obtain:

oy (1) = f YOS t2t
t

YA(t) = o f f(sy(@9)As txt
t

Sincey*(t) > 0 andtlimy(t) = const.Therefore

0<y) -y = [y9as= [o( [ teygoNacas< o ®
t2 S

t

It follows from (7),(8) that

00

f(l)(tff(s C)A9)AL < co.

t

(ii)Sufficiency. Suppose that (6)holds. We need only consider treevehsre the constaist> 0 in (6)
is positive.Choosg > ty so large that

t. = min{ty, inf g(t)} > to,
>ty

and

o

fd)(tff(s, C)AS)At <

t

9)

NI O

Define a set U by
U 1= {y € Crg[t,, o) : ‘—2: <y <ctst)

and a mapping F on U by

c- [o(f fryg@MAAs  txt

(Fy)(®) = o %
c— [O([ f(o,Y(Q(@))Ac)As, t. <t<ty.
ty S

It can be shown thatU < U andFU is relatively compact. Consequently, by the Schauder fixaidt
theorem, there exists an elemgrt U such thay = Fy. i.e.,

o

yt) = c - f a( f (e Y(@@NAAS t2 1

t

Clearly y is a solution of type (lll) of (1), antd lip(t) = c. This completes the proof.
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Theorem 2.3.The equation (1) has a positive solution of type (ll) if (2)dsand

00

f @ f | f(s.6) | A9AL = oo, (10)
t

to

Where 0<| ¢ |<| ¢ | with ¢¢ > 0, where c is given as in (2).
Proof: We only consider the case where- 0 in (2). Choos& > 0 small enough such that® k < c.
choosd; large enough such that

t, = min{tl,;g{ a()} > to,

and

f f(s k(gt) + 1)AL < 6(K)
t

Let
W = {y € Cig[t., 00), kK < y(t) < k(t + 1),t > t.}.

Where the set W with the partial ordery; <y, © yi(t) < y»(t), for t > t.. clearly, if A c W, there exsits
inf Aand supA, define a mapping F on W by

Fm=1 " tft q’(f f(oy(@@))Ar)As  t>1

k, . <t<ty
Obviously, ify € W, then, fort, <t,

t oo

k< (Fy)t) <k+ f(l)(f (o, y(9(0)))Ao)As

t

t

<k+ f d(H(K)As < k(t + 1)

t

i.e., FW c W, and F is rd-continuous. Therefore, by theaster-s fixed-point theorem, there exist a fixed
pointy € W, such thaFy =1y, i.e.,

t oo

y(t) = k+ f a( f Ho YO(@)AT)AS t = (11)

t

which impliesy(t) is a positive solution of (1) ort{, ). It follows from (10),(11) that

tim X2 < jim v = fim o( [ 1(s ya(9Mas=0
t

t )

fim () = fim [k+ f o f F (o, KIAT)AY] = oo
t s

This shows thay(t) is a solution of (1). This completes the proof.
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