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Abstract
In this paper, A classification of nonoscillatory solution of the quasilinear dynamic equation on time scales
are considered, by Schauder, Knaster’s fixed-point theorem, Some necessary and sufficient conditions for
nonoscillation of the dynamic equations onT are established.Our results as special case whenT = R and
T = N, involve and improve some known results.
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1. INTRODUCTION

The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in
his Ph.D.Thesis in 1988 in order to unify continuous and discrete analysis[1]. A time scaleT, is an arbitrary
nonempty closed subset of the reals, and the cases when this time scale is equal to the reals or to the integers
represent the classical theories of differential and of difference equations. Many other interesting time scales
exist, and they give rise to many applications[3].

In recent years, there has been much research activity concerning the oscillation and nonoscillation of
solutions of various equations . We refer the reader to the papers[2−5,7] and the reference cited therein.

In this paper, we consider a quasilinear dynamic equation

(φ(y∆(t)))∆ + f (t, y(g(t))) = 0. (1)

Wheret ∈ [t0,∞) = T0 ⊆ T . the following conditions is always satisfied
(H1) : φ ∈ Crd(T,R) is a strictly increasing and odd function, andφ is submultiplicative, i.e.
φ(xy) ≤ φ(x)φ(y), x, y ≥ 0.

(H2) : g ∈ Crd(T0,R+), and lim
t→∞

g(t) = ∞.

(H3) : f ∈ Crd(T0 × R,R), for each fixedt ≥ t0 > 0, f (t, y) is increasing iny, andy f (t, y) > 0, y , 0.
The behaviors of the solution for the equation

(p(t)x∆(t))∆ + q(t)x(σ(t)) = 0.
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have been studied by many authors, such as A.D. Medico et al.[4] . It is clear that the equation is a special
case of Eq.(1).

2. NONOSCILLATION THEOREMS

Lemma 2.1.(see[6]). Ifφ is submultiplicative on [0,∞), then its inverse functionΦ is supermultiplicative
on [0,∞),i.e.Φ(xy) ≥ Φ(x)Φ(y), x, y ≥ 0.Moreover,Φ satisfiesΦ( y

x ) ≤ Φ(y)
Φ(x) , for x, y > 0.

Lemma 2.2. If y(t) is a nonoscillatory solution of (1), theny(t)y∆(t) > 0, and there exist two positive
constantsc1, c2, such that

c1 ≤| y(t) |≤ c2t

for t large enough.
Proof: Without loss of generality, we may assume thaty(t) > 0, for t ≥ t1 ≥ t0, it follows from

(φ(y∆(t)))∆ = − f (t, y(g(t))) < 0

andφ is strictly increasing thatφ(y∆(t)) is strictly decreasing on [t0,∞). Thus,y∆(t) is strictly decreasing.
y∆(t) is eventually positive, say,y∆(t) > 0, for t ≥ t1, wheret1 is large enough. Otherwise, if there exists a
t∗ such thaty∆(t∗) = 0, thent > t∗,y∆(t) < 0, Thus, it is easy to see thaty(t) must become negative, which
contradicts our assumption.

Sincey∆(t) ≤ y∆(t1),for t ≥ t1, integrating it fromt1 to t,we obtain

y(t) − y(t1) ≤ y∆(t1)(t − t1)

y(t) ≤ y(t1) + y∆(t1)(t − t1) ≤ c2t

for somec2 > 0. On the other hand, sincey∆(t) > 0, for t ≥ t1,there exists ac1 > 0 such thaty(t) > c1 for
t ≥ t1 . Hence, we complete the proof.

It follows from Lemma 2.2 and its proof that one and only one ofthe following three possibilities occurs
for the asymptotic behavior of any nonoscillatory solutiony(t) of (1):
(I) : lim

t→∞

y(t)
t = const , 0;

(II) : lim
t→∞

y(t)
t = 0, lim

t→∞
| y(t) |= ∞;

(III) : lim
t→∞

y(t) = const , 0.

Theorem 2.1.The equation (1) has a positive solution of typeI1 if and only if

∞
∫

t0

| f (t, cg(t)) | ∆t < ∞, (2)

for some constantc , 0.
Proof: (i) Necessity. Suppose that (1) has a nonoscillatory solution of type I1. We may assume thaty(t)
is eventually positive. Sincey(t) → ∞, as t → ∞, it follows from Lemma 2.2 thatt ≥ t1, y(t) > 0, and
y∆(t) > 0. Since

lim
t→∞

y(g(t))
g(t)

= const , 0,

there exist threec1, c2 > 0, t2 > t1 such that

c1g(t) ≤ y(g(t)) ≤ c2g(t) (3)

An integration of (1) yields

t
∫

t2

f (s, y(g(s)))∆s = φ(y∆(t2)) − φ(y∆(t)) < φ(y∆(t2)).
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which implies

0 <

∞
∫

t2

f (s, y(g(s)))∆s < ∞ (4)

It follows that
∞
∫

t2

f (s, cg(s))∆s < ∞. A similar argument holds ify(t) < 0.

(ii) Sufficiency. Without loss of generality, we may assume that the constantc > 0 in (2) is positive. Let
k > 0 be a constant such thatΦ(2k) ≤ c. it follows from (2) that there existst1 > t0 large enough such that

0 <

∞
∫

t1

f (t, cg(t))∆t ≤ k (5)

Definet∗ = min{t1, inf
t≥t1

g(t)} ≥ t0,

0 <

∞
∫

t∗

f (t, cg(t))∆t ≤ k

Define a set
Y := {y ∈ Crd [t∗,∞) : Φ(k)(t − t1)+ ≤ y(t) ≤ Φ(2k)(t − t1)+, t ≥ t∗}

where

(t − t1)+ =

{

t − t1, t ≥ t1
0, t∗ ≤ t < t1.

and Y is a set with partial order≤: y1 ≤ y2 ⇔ y1(t) ≤ y2(t), t ≥ t∗. Clearly, for allA ⊂ Y, there exists
inf A and supA, Let F be a mapping defined by

(Fy)(t) =























t
∫

t1

Φ(k +
∞
∫

s

f (σ, y(g(σ)))∆σ)∆s, t ≥ t1

0, t∗ ≤ t < t1.

It follows from (5), Lemma 2.1 and

t
∫

t1

Φ(k)∆s ≤ (Fy)(t) ≤

t
∫

t1

Φ(2k)∆s t ≥ t1

i.e.
Φ(k)(t − t1) ≤ (Fy)(t) ≤ Φ(2k)(t − t1) t ≥ t1

thatFY ⊆ Y, and F is rd-continuous and increasing. Therefore, by theKnaster,s fixed-point theorem, there
exists a fixed pointy ∈ Y, such thatFy = y, i.e.,

y(t) =

t
∫

t1

Φ(k +

∞
∫

s

f (σ, y(g(σ)))∆σ)∆s t ≥ t1

It is clear thaty(t) is a positive solution of Eq.(1) and lim
t→∞

y(t)
t = Φ(k) = const. This completes the proof.

Theorem2.2.The equation (1) has a positive solution of type (III) if and only if

∞
∫

t0

Φ(

∞
∫

t

| f (s, c) | ∆s)∆t < ∞, c , 0 (6)
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Proof: (i) Necessity. Suppose that (1) has a positive solutiony(t) of type (III). it follows from Lemma 2.2
that t ≥ t1, y(t) > 0, andy∆(t) > 0.wheret1 is large enough. Since lim

t→∞
y(t) = const , 0, there exist three

c1, c2 > 0, t2 > t1 such that
c1 ≤ y(g(t)) ≤ c2 t ≥ t2 (7)

Sincey∆(t)→ 0 ast → ∞, integrating (1) from t to∞, we obtain:

φ(y∆(t)) =

∞
∫

t

f (s, y(g(s)))∆s t ≥ t2

i.e.,

y∆(t) = Φ(

∞
∫

t

f (s, y(g(s)))∆s t ≥ t2

Sincey∆(t) > 0 and lim
t→∞

y(t) = const.Therefore

0 < y(∞) − y(t2) =

∞
∫

t2

y∆(s)∆s =

∞
∫

t2

Φ(

∞
∫

s

f (σ, y(g(σ)))∆σ)∆s < ∞ (8)

It follows from (7),(8) that
∞
∫

t2

Φ(

∞
∫

t

f (s, c)∆s)∆t < ∞.

(ii)Sufficiency. Suppose that (6)holds. We need only consider the case where the constantc > 0 in (6)
is positive.Chooset1 > t0 so large that

t∗ = min{t1, inf
t≥t1

g(t)} ≥ t0,

and
∞
∫

t1

Φ(

∞
∫

t

f (s, c)∆s)∆t ≤
c
2

(9)

Define a set U by

U := {y ∈ Crd[t∗,∞) :
c
2
≤ y(t) ≤ c, t ≥ t∗}

and a mapping F on U by

(Fy)(t) =



































c −
∞
∫

t

Φ(
∞
∫

s

f (σ, y(g(σ)))∆σ)∆s, t ≥ t1

c −
∞
∫

t1

Φ(
∞
∫

s

f (σ, y(g(σ)))∆σ)∆s, t∗ ≤ t < t1.

It can be shown thatFU ⊆ U andFU is relatively compact. Consequently, by the Schauder fixed-point
theorem, there exists an elementy ∈ U such thaty = Fy. i.e.,

y(t) = c −

∞
∫

t

Φ(

∞
∫

s

f (σ, y(g(σ)))∆σ)∆s t ≥ t1

Clearly y is a solution of type (III) of (1), and lim
t→∞

y(t) = c. This completes the proof.
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Theorem 2.3.The equation (1) has a positive solution of type (II) if (2) holds and

∞
∫

t0

Φ(

∞
∫

t

| f (s, ξ) | ∆s)∆t = ∞, (10)

Where 0<| ξ |<| c | with cξ > 0, where c is given as in (2).
Proof: We only consider the case wherec > 0 in (2). Choosek > 0 small enough such that 0< k < c.
chooset1 large enough such that

t∗ = min{t1, inf
t≥t1

g(t)} ≥ t0,

and
∞
∫

t1

f (s, k(g(t) + 1))∆t ≤ φ(k)

Let
W := {y ∈ Crd[t∗,∞), k ≤ y(t) ≤ k(t + 1), t ≥ t∗}.

Where the set W with the partial order≤: y1 ≤ y2 ⇔ y1(t) ≤ y2(t), for t ≥ t∗. clearly, if A ⊂ W, there exsits
inf A and supA, define a mapping F on W by

(Fy)(t) =























k +
t
∫

t1

Φ(
∞
∫

s

f (σ, y(g(σ)))∆σ)∆s, t ≥ t1

k, t∗ ≤ t < t1.

Obviously, ify ∈ W, then, fort∗ ≤ t,

k ≤ (Fy)(t) ≤ k +

t
∫

t1

Φ(

∞
∫

s

f (σ, y(g(σ)))∆σ)∆s

≤ k +

t
∫

t1

Φ(φ(k))∆s ≤ k(t + 1)

i.e., FW ⊆ W, and F is rd-continuous. Therefore, by theKnaster,s fixed-point theorem, there exist a fixed
pointy ∈ W, such thatFy = y, i.e.,

y(t) = k +

t
∫

t1

Φ(

∞
∫

s

f (σ, y(g(σ)))∆σ)∆s, t ≥ t1 (11)

which impliesy(t) is a positive solution of (1) on [t1,∞). It follows from (10),(11) that

lim
t→∞

y(t)
t
= lim

t→∞
y∆(t) = lim

t→∞
Φ(

∞
∫

t

f (s, y(g(s))))∆s = 0

lim
t→∞

y(t) ≥ lim
t→∞

[k +

t
∫

t1

Φ(

∞
∫

s

f (σ, k)∆σ)∆s] = ∞

This shows thaty(t) is a solution of (1). This completes the proof.
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