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Abstract

The first integral method is arfizcient method for obtaining exact solutions of nonlineatipadifferential
equations. The aim of this letter is to find exact solutionthefZakharov-Kuznetsov(ZK) equation by the
first integral method.
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1. INTRODUCTION

Nonlinear evolution equations have a major role in variaisrdific and engineering fields, such as fluid
mechanics, plasma physics, optical fibers, solid stateigfyyshemical kinematics, chemical physics and
geochemistry. Nonlinear wave phenomena of dispersiosigdison, difusion, reaction and convection are
very important in nonlinear wave equations. In recent yequite a few methods for obtaining explicit
traveling and solitary wave solutions of nonlinear evaatequations have been proposed. A variety of
powerful methods, such as, tanh-sech method [1, 2, 3],dgtetanh method [4, 5, 6], hyperbolic function
method [7], sine-cosine method [8, 9, 10], Jacobi elliptindtion expansion method [11], F-expansion
method [12] ,and the first integral method [13, 14]. The fins¢gral method was first proposed by Feng [13]
in solving Burgers-KdV equation which is based on the rirgptty of commutative algebra.The Zakharov-
Kuznetsov(ZK) equation is in the following form:

Ut + auuy + b(Uyx + Uyy)x = 0,

where a, b and ¢ are real constants. Wazwaz in [15] applieéxtended tanh method to obtain exact
solutions of the generalized Zakharov-Kuznetsov (gZK)agigun in the form

Ut + auUpg + b(Ux + Uy)x =0, n> 1. 1

If n=2the Eq.(1) becomes
Ug + aU2Uy + b(Uyxy + Uyy)x = O. (2)
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The ZK equation, presented in [15], governs the behavior @ikly nonlinear ion-acoustic waves in a
plasma comprising cold ions and hot isothermal electronisgrpresence of a uniform magnetic field [16,
17]. The ZK equation, which is a more isotropic two-dimemnsib was first derived for describing weakly
nonlinear ion-acoustic waves in a strongly magnetizeddssplasma in two dimensions [15]. The aim of
this paper is to find exact solutions of Eq.(2).

2. FIRST INTEGRAL METHOD

Consider the nonlinear partialftBrential equation in the form
F(u’ uX’ UY5 Ut, uXX’ qua o ') = O’ (3)

whereu = u(x, y, t) is the solution of nonlinear partialfierential equation Eq.(3). We use the transforma-
tions,

u(x.y, t) = £(£), 4)
whereé = x + y — st. This enables us to use the following changes:
0 0 0 0 0? 92
a(-) = _Sa_g(‘)’ &(-) = 6_5(')’ ﬁ(-) = @(-), e (5)

Using (5) to transfer the nonlinear partialférential equation Eq.(3) to nonlinear ordinaryfeiential
equation

G(F(8), fe(é), fee(é),---) = 0 (6)
Next, we introduce a new independent variable
_ _0f(©)
X@ =1, Y= % (7
which leads a system of nonlinear ordinarffeliential equations
§) =Y,
X&) = Y@ @

Ye(&) = F1(X(8). Y(£)).

By the qualitative theory of ordinary flierential equations [13] ,if we can find the integrals to Eguigder
the same conditions, then the general solutions to Eq.{8peasolved directly. However, in general, it is
really difficult for us to realize this even for one first integral, beesfos a given plane autonomous system,
there is no systematic theory that can tell us how to find it fitegrals, nor is there a logical way for
telling us what these first integrals are. We will apply th&iBibn Theorem to obtain one first integral to
Eq.(8) which reduces Eq.(6) to a first order integrable adirdifferential equation. An exact solution to
Eq.(3) is then obtained by solving this equation. Now, letaczll the Division Theorem:

Division Theorem:

Suppose thaP(w, 2) and Q(w, z) are polynomials irC[w, z] and P(w, 2) is irreducible toC[w, Z]. If
Q(w, 2) vanishes through all zero points B{w, z), then there exists a polynomigb(w, z) in C(w, 2) such
that

a(w, 2) = P(w, 2)F,(w, 2).

3. EXACT SOLUTIONSOF ZK EQUATION

In this section we study the ZK equation in the form

Ug + auPUy + b(Uyy + Uyy) = 0. (9)
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By make the transformatiam(x, y, t) = f(£),& = x+y — , the Eq.(9) becomes

_S%S) + a(f(g))z%g) + ba%_ aza;(f) + a;;(f)) =0, (10)
by integrating Eq.(10) and neglecting the constant of iretgn we obtain
_sf() + g(f(g))?’ + Zbaza;(f) 0. (11)
Using (7) we get
X =Y(@©). (12)
V@) = 2 X(@ - = (X©) (13)

According to the first integral method, we suppose X&) andY(¢), are the nontrivial solutions of (12)
and (13) also

N
axY) = > aX)yY =0,
i=0

is an irreducible polynomial in the complex domain C(X, Y)ch that

N
aX(©), Y©) = > aX@)YE' =0, (14)
i=0

whereg;(X)(i = 0,1, ..., N), are polynomials of X andn(X) # 0. Equation (14) is called the first integral
to (12), (13). Due to the Division Theorem, there exists gpoimialg(X) + h(X)Y, in the complex domain
C(X,Y), such that

dg dgqdX dqdYy

m
SA_AEA L AHE ' i
%" axde tava -0+ h(X)\O;a.(X)Y (15)
In this example, we take two flierent cases, assuming thatNL, and N= 2, in (14).
Case A: Suppose thall = 1, by comparing with the cdcients ofY'(i = 2, 1, 0), of both sides of (15), we
have

1(X) = h(X)a(X), (16)
0(X) = g0¥21(X) + H(X)a0(X), an
81 (X[ X() = == (X)) = g00)a0(X). (18)

We obtain thatky(X), is constant anti(X) = 0, takea;(X) = 1, and balancing the degreesgfi), ai(X)
andap(X), we conclude thadeg g(X) = 1, only. Suppose thai(X) = A; X + By, then we findag(X).

ao(X) = Ag + BoX + %Alxz. (19)

Substitutingag(X), a;(X) andg(X), in the last equation in (18) and setting all the fiméents ofX to be
zero, then we obtain a system of nonlinear equations andlbiyngat, we obtain

[ a [ a
B() = 0, Al ==+ —%, S= iZbAo —%, (20)

whereA is arbitrary constant.
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Using the conditions (20), into Eq.(14), we obtain

YO = Aot 5\ (XY 1)

Combining (21) with (12),we obtain the exact solution to &iipn (12), (13) and exact solutions to Eq.(9)
can be written as:

—_— AO ’_i
ur(x,y,t) = - 2o tanh[ \ ® (X+y =+ 2bAg , /—it + &)
\ a 2 3b

3b

- AO '_i
u(x,y,t) = - 2R tan[ \ 3|D(x+y4_r 2bA0,/—3t+§0)].
\ _a 2 3b

3b

Case B: Suppose thall = 2, by equating the cdicients ofY! (i = 3,2, 1,0) on both sides of (15), we have

ax(X) = h(X)ax(X), (22)
ay(X) = g(X)az(X) + h(X)ay(X). (23)
ao(X) = —2a2(X)[ X(f) —b(X(é-‘))S)] +9(X)au(X) + h(X)ao(X). (24)
a(X)5; X(f) b(X(f))sl = g(X)ao(X). (25)

We obtain thaty(X), is constant anti(X) = 0, takeay(X) = 1, and balancing the degreesgfK), ag(X),
andag(X), we conclude thatleg g(X) = 1, only. Suppose thaj(X) = A1 X + By, then we finda;(X) and
ap(X), as

al(X) = AO + Box + %Alxz, (26)
ap(X) = d + BpAgX + % (—g + B3+ AOAl) X2+ %AlBOXS L (% }Az) X2, (27)

Substitutingag(X), a1(X), a1(X) andg(X), in the last equation in (25) and setting all the fméents ofX to
be zero, then we obtain a system of nonlinear equations asdliayng with aid Maple, we obtain

1, : . 2V-3ba 3 a
d_ZAO’ Bo=0, A== B S = +bAg,/ W’ (28)

whereA is arbitrary constant.
Using the conditions (28), into Eq.(14), we obtain

V=3Ba(X(E))? + 3Aob
6b

Combining (29) with (12),we obtain the exact solution to&iipn (12), (13) and the exact solution to Eq.(9)
can be written as:

Y() = - (29)

\/ “3ba_ +~Adcbv—3ba
STV

The exact solutions of the Zakharov-Kuznetsov (ZK) equmatig(x, y, t) andus(x, y, t) are soliton solutions.

(X+Yy =+ bAg ——t + o).

us(x,y,t) = —
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4. CONCLUSION

In this paper, the first integral method has been succegsiplplied to find the solutions for Zakharov-
Kuznetsov(ZK) equation.Thus, we can say that the proposthads can be extended to solve the problems
of nonlinear partial dferential equations arising in the theory of solitons aneoéreas.
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