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Abstract

The paper is concerned with the inverse unsteady-statdgonobf thermolelastic deformation of a thin
annular disc in the plane state of stress. Homogeneous bogoonditions of the third kind are maintained
on curved surfaces of the disc while on the lower plane sartfae heat flux is maintainedua(r, t) = Owhich

a known function of r and tis. The flux is prescribed also onglame z= ¢ which serves as the interior
condition.

A mathematically this problem of determining the tempemtdisplacement and stress functions of a
thin annular disc is studied. The finite Marchi-Zgrabliclldraplace transform techniques are used to find
the solutions of the inverse transient themoelastic problef a thin annular disc.
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1. INTRODUCTION

The inverse thermoelastic problem consists in the detextioim of temperature of the heating medium, the
heat flux on the boundary surfaces of the solid when the condiof the displacement and stresses are
known at some points of the solid under consideration. Therse problem is very important in view of
its relevance to various industrial machines subjectec#ding such as main shaft of the lathe and turbine
and roll of a rolling mil.

In the present paper an attempt is made to determine the tatupe displacement and stress functions
on upper plane surface of a thin annular disc occupying theesp: a< r < b, 0< z < h by applying finite
Marchi-Zgrablich (FMZ) transform and Laplace transforroheiques. A brief note containing relevant
results of the FMZ integral transform, although elementagt easily found in text-books is provided
in the Appendix. The inverse unsteady-state thermoelpstiblem of a thin annular disc studied earlier
in, is reconsidered here in order to highlight some new featufeelated problem of determining the
temperature, displacement and stress functions due talpadistributed heat supply atz £(0 < £ < h)
in a thin annular didéis also studied.
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Sierakowski and Su#l studied the direct problem of an exact solution to the eladgformation of a
finite length hollow cylinder. 1! the inverse transient thermoelastic problem of deterrgitémperature,
displacement and stress functions on the upper plane suofaa finite length hollow cylinder studied.
The FMZ and Laplace transform techniques that are used towd#athe annular disc problem. The
corresponding correct expressions are derived in the pres@er. Also, the numerical results are obtained
and presented graphically.

2. THERMOLEASTIC PROBLEM OF A THIN ANNULAR DISC
IN THE PLANE STATE OF STRESS

Consider a thin annular isotropic disc of thickness h ocoupthe space Da<r < b, 0<z< h. The
differential equation governing the displacement functign z t) is

9°U 10U

m + FE = (1+ V)atT (21)

wherev and a are Poisson’s ratio and the linear @id@ent of thermal expansion of the material of the disc
respectively, and (r, z t) is the temperature of the disc satisfying thfatiential equation

T 10T &T 19T

ot TaZ ke (22)
subject to the initial condition
T(r,z0)=0 (2.3)
the boundary conditions
0
[T (r,zt)+ k1—T(r,z,t)} =0 (2.4)
or ra
0
[T (r,zt)+ kg—T(r,z,t)} =0 (2.5)
or —b
2T(r ) =u(r,t) (2.6)
(92 ’ Za 0 - ’ .
and the interior condition
2T(r )y = f(rt) (2.7)
62 £ Za zzé‘: - £ .

where Kk is the dtusivity and k, k; are the radiation constants on the two curved surfaces afisice
In order to solve the dlierential equation (2.2) subject to the conditions (2.3)A(&e define the finite
Marchi-Zgrablich (FMZ) transform of as

b
f@mzo=jWTmzo%wbb#amr (2.8)
a
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with the inversion formula

x> T(un, 2.t)So(Ka, Ko, nl)

Trzt=) . (2.9)
n=1

where $ and G, are given by Eqns. (19)—(21) and (25) in the Appendix ap@re the positive roots of

the transcendental equation (22). Taking the FMZ transfairEqns. (2.2)—(2.3), (2.7)—(2.7) and using the

operational property (18) with 0 in the Appendix and conditions (2.4) —(2.5) we get

T .= 10T

2 M T (2.10)
T(un,2.0) = 0 (2.11)
T _ T —
[ELO = U(un, t); [E e = f(un,t) (2.12)
Now we introduce the Laplace transform with respect to threatate t and define
T (un, 2 ) = f e 3T (un, z t)dlt. (2.13)
0
Taking Laplace transform of Eqns. (2.10),(2.12) and udiegdondition (2.11) gives
82 T 2T% _ - 2 _ 2 S
a1 0T =0 =y (2.14)
L (un, 9); S| 2 *(in, S) (2.15)
(92 o - n» 1 (92 Zzg - ns .
Solving the diferential equation (2.14) and using the conditions (2.1&ldgi
=, & cosh@zg _. coshp(z- 9)]

In order to find the inverse Laplace transformldfin (2.16) we need to find the inverse Laplace transform
for G(s) given by

_cosh@d . , , s
According to the method described in [5] we have
Inverse Laplace transform of Gésyum of residues ofeG(s) at the poles (2.18).
The poles and residues ot@(s) are given by
(i)
g =imr or s=-k@2+12) (2.18)
Bon =i+ 2y Am= ”g—‘" m=12, (2.19)
Res o efcoshf) 2k, ,\m kg2, t
S= kg2, [sG(9)] = sl'f?ﬁ . 23 CoshER)Ga/dS " 2 (-1)"cos(imz)e (2.20)
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(i) g=0ors= —ku?

Res edcoshf) k.
S— k/lz [SSIG(S)] s—|! —k2 2 sinh@¢)(dg/ds) f .

Now we can find the inverse Laplace transform of G(s) by ustndg) — (2.21). Then, using (2.16) — (2.17)
the inverse Laplace transform ®f (un, z S) is given by

T(un 2. t) = To(n, 2. 1) + Tolun, 2. 1), (2.22)

(2.21)

K

T_l(,un,z»t) = Z

t t
f o ) gy 4 %‘Z (-1)™ cos@m2) f f (un, t')e By’ (2.23)
0 m=1

To(un, 1) = — f U(un, )50l — ZKZ( 1" cosfim(z— &)] f U(en, )& om0t (2.24)
J ¢

where we have made use of the convolution theorem of Laptaosform. Thus the temperaturér, z t)
satisfying the conditions (2.2) — (2.7) is given by (2.9)2@) — (2.24) and (2.19).

The problem of determining the temperatiig, z t) satisfying Eqns. (2.2) — (2.7) was studied earlier
by Khobragade and Durd®. However, due to erroneous inverse Laplace transform thtgdims in (2.23)
and (2.24) that do not involve infinite series are missingnfithe corresponding expressionsi®f It is
therefore important to show th@i(un, z t) given by (2.22) — (2.24) satisfies the conditions (2.10) 222
To simplify the matters we do it for the case whefret) = 0

From the Fourier series expansion

o (-1)Mcosfnx)  « cosh@x) 1
Z n+a?  2asinh@a) 202 - (2.25)

we can deduce the formula

Z (-1 COS(/lmZ) _ _ &pn coshfin?) —E<z<¢ (2.26)

1+2up 2 SiNN(ung)

If we carry out an integration by parts in the expressionﬁﬂpn, z t) given by (2.23) and make use of the
formula (2.26) we can write

— _ coshfin2) 2t of Ke2(t-t)
Tl(/“ln’ Zw t) - n SInhQInf) (/“ln’ t) [f(/.ln, 0)e f e dt

t_
_fzw{f(ﬂnow f ewzat)dt] (2.27)

2
° m=1 ﬁ 0
Differentiating (2.27) term by term twice with respect to z, we slaow that

2

t _
6 — 24— 1 — —k;lzt (9f Z(t_t/) ’
ﬁTl _:unTl :E 'f(pn,O)e o+ Wék/‘n dt

0

t —
250 gy e O)e et f O gty
+ 5;( 1) COSQmZ)[f(/Jn,O)e + at/e dt (2.28)

0
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Also, differentiating (2.27) with respect to t term by term we get

19 _ coshfud) of }[f_(/,tn,O)ek#ﬁt—iﬂ+ of kﬂz(“)dt}

kot = kunsinh@ng) ot k2 ot av©
2 - 1 of [ of N
+ E;(_l)m cos(im2) [f(ﬂn, 0)e !t — Gt Eekﬁﬁn“t)dt] (2.29)
m= 0
From (2.28) — (2.29) we obtain

= .= 10~= 1 of (- 1)"‘cos(/l Uné COshfin2)
—T-T-==T = 1+ 2u - =0, 2.30
o2 M T ket T ke 8t[ Z Sinh(uné) (2:30)

where the extreme right equation follows from the formul&2@). Eqn. (2.30) shows tha, given by
(2.27) satisfies the fierential equation (2.10). Using (2.26) we can show also Thaiven by (2.27)
satisfies the initial condition (2.11) and the boundary d¢thows (2.12). In this way we have shown thiat
given by (2.22) — (2.24) withu(r, t) = O satisfies the Eqns. (2.10) — (2.12). It is obvious that tetigion
u(r,t) =0 can be dropped from the above analysis. This meangi{paiz t) is the correct solution of
Egns. (2.10)—(2.12).
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Figurel

Variation of T = —T(r, z t) with z where T is given by Egn. (3.9), (3.8), (3.6), (3.5).3B8in Section 3 and
Eqns. (25), (19), (20), (21) in Appendix. The values of vas@arameters are given bytl, a= 0.5, b=
1.0, k=10.38, k=k, = 0.25,6 =0.75, h=1 and r= 0.55, 0.70, 0.85, 0.95

Figure 2

Figure2
Variation of T with t when z= 1 and the values of other parameters are the same as in Fig.1
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Figure 3
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Figure3
Variation of &y = [2u(1 + v)at]f1 oy With z whereo; is given by Eqns. (3.14), (3.8), (3.6), (3.5). The
values of other parameters are the same as in Fig. 1

3. SPECIAL CASE AND NUMERICAL RESULTS

In order to obtain some numerical results we choose spealiaés of the prescribed functions and various
parameters. As in [1] we set

f(r,t) = (L-e')(h-¢&d(r-0.9); u(rt)=(1-e")hs(r—0.9), (3.1)
then we have
b
f(un, t) = frf(r, t)So(K1, ko, pnr)dr = an(1 - ™), (3.2)
an = (h = £)(0.9)So(ky, k2, 0.9un) (3.3)
and we can show that
t
f f (un, )& gt = @, Bm(t)/K, (3.4)
0
k(1-e™) + (e — 1)/
Bm(t) = (:ﬁ% 7 (3.5)
Let
k(1 —et) + (et — 1) /42
Dn(t) = (k2 =1) , (3.6)
then using (2.22) — (2.24) and (3.2) — (3.6) we have
T(un,zt) = ~(h - & anEn(2 1), (3.7)
En(z 1) = Dat) - ?Z (~1)"[(h - &) cosnd) — h coslAm(z - &)]] Bi) (3.8)
m=1
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Inverting the FMZ transformin (3.7) we get

T(r,zt) =

anEn(z t)So(ka, kzvlvlnr)
(3.9)
"5 Zl G,

where E(z,t) is given by (3.8), (3.6) and (3.5). The constamtsand G, are given by (3.3) and Eqns.(25),
(19) — (21) in the Appendix. Alsqy, in all these equations are the positive roots of transceaatlequation
(22). By taking a= 0.5, b=1, k= 0.38, kg = k, =0.25,£ = 0.75 and h= 1, the variation of T(r, z, t) is shown
in Fig. 1 with z when & 1 and r= 0.55, 0.70, 0.85 and 0.95. Fig. 2 shows the variation of T (), with t
when z= 1 and the values of other parameters are the same as in Fig. 1.

The displacement function U(r, z, t) satisfies the relatid), Since we have

9So 13S0 _
- = —HpS 3.10
orz "t ar | Mo (3.10)
we can write
(1+v)a X anEn(z t)So(ky, ko, pnr)
ur.z1) = , 3.11
C20=Tsg 4T e (310
which is a particular solution of (2.1). The stress funcsion, ando, are given by
10U U
Oy = _Z/JFE ;o Op = —Zﬂm (3.12)

whereu is Lame’ constant, while each of the stress functiepso andoy, are zero within the disc in the
plane state of stress. From (2.1) and (3.12) it follows that

o+ 0g9 = —2u(l+v)aT (3.13)

so thatoy is a linear combination af;, and T. Now, using (3.11) — (3.12) we can write

_ 2u(1+ v)as o anEn(Z 1)Sh(ke, ko, panl)
R e P (A ¢19
where E(z,t) is given by (3.8), (3.6) and (3.5). It may be noted that
(rian)*Sp(Ka, Ko, n) = An [=(rpan) ™ Iu(unr )] = B | =(ran) ™ *Ya(uanr) (3.15)

so thatoy, = [2u(l + v)a] toy can be obtained fronT simply by replacingdo(unr) and Yo(unr) by
—(unr) "1 (unr) and —(run)tY1(unr) respectively. The variation af,/with z is shown in Fig.3 for r=
0.5,0.6,0.7,0.8,1.0 when the values of other parametertharsame as in Fig.1.

APPENDIX

FINITE MARCHI-ZGRABLICH TRANSFORM

Let the Bessel dierential equation of order p be given by

XY+ 5y + (Cu? - pYy =0 @
and let the boundary conditions be given by
y(@) +ky (@ =0; yb)+ky(b)=0 &)
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The general solution of Eqn.(1) is
Y(X) = A Jp(ux) + B Yp(ux) 3)

where J(ux) and Y,(ux) are Bessel functions of the first and the second kind, isedy, of order p. Then
the boundary conditions (2) yield

A Jp(ka, @) + B Yp(ka, @) = 0 (4)
A Jp(ka, 1b) + B Yp(ko, ub) = 0 5)
where, for i=1,2, we have
Jp(ki, ux) = Ip(ux) + kipr (X, (6)
Yo(ki, ) = Yp(ux) + ki Yp(uX). ()
The pair of Eqns.(4) — (5) has a nontrivial solution only if
‘]p(klvlla)Yp(k&/lb) - ‘]p(k29/1b)Yp(k19/1a) =0 (8)

Let i, be the i positive root of the transcendental equation (8). Using<(@) we can write the solution
(3) in the following two forms

9009 = -y [0 Yol ) = Yol ol )] ©
and A
W= T | I (nX) Yo (Ko, tnb) = Yp(tanX) Ip(kz, pnb) | - (10)
Define a functio®pas follows:
Sp(ka, ko, %) = An Ip(tnX) = B Yp(un) , (11)
An = Yp(ke pin@) + Yp(Kes pinb) ;- Bn = Jp(Ka, in@) + Jp(ke, pinb). (12)

In view of (9) — (10) the function $is a solution of Bessel's fferential equation (1) of order p and
satisfies the boundary conditions (2). Because of this thetsequence of functioqﬁsp(kl, kz,ynx)}::l is
orthogonalin the interval (a, b). Finite Marchi-Zgrablig@MZz) integral transform is defined as (3&&*")

b
flun) = [ X098 i (13)

and its inversion formula is given by

&\ (un)Sp(ke ko,
F(x) = Z (1) p(cl 2, UnX) (14)
n
n=1
where the norm £may be written
b
Co = [ xSHa. ke urx)dx (15)
a
The value of the integral (s given by (see Snedddh, Prob. 8 — 14)
x? 2 P? \ s b
Co= {3 [{sp(kl, o ) + (1 - W) S2 (k. kz,ynx)]}a (16)
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SinceSpsatisfies the boundary conditions (2) we can write

2

a 1 P’ ) 2
-5 |1+ - Sp(K1, Ko, nd)
2 [( K2 ga?) P )

2 2
Co= b—[[u . —p—)sﬁ(kl, ko, i) (17)

2 Koud  pab?

Thus the FMZ integral transform and its inverse are givenlt®) ¢ (14) and (17). Also, if we carry out
integration by parts twice we can prove the operational @riyp

b
2f  10f p?
fx[ﬁﬁﬁ_ﬁf
a

a
- k_ Sp(kl: k27 ,Una)
1

b
Sp(k, ko, unX)dx = k—zsp(kl, ka2, unb)

of
f+ kz&L:b

of .
e "lﬁLza ~ 12 Gun). (18)

SPECIAL CASEP =0

In our analysis we need the results only for the special cas8.pFor this special case we have

So(k]_, kg,,unr) = An Jo(,unr) - Bn Yo(,unr), (19)
An = Yo(un@) — Kaptn Y1(und) + Yo(unb) — kopn Y1 (unb), (20)
B = Jo(und) — KipnJdi(und) + Jo(unb) — kopnJa(unb), (22)

whereuy, is the nth positive root of the transcendental equation
[Jo(und) — KipnJ1(und)] [Yo(unb) — Koptn Y1 (inb)]

= [Jo(unb) = koptnJ1(unb)] [Yo(und) — KipnY1(und)] = O (22)

Fora= 0.5, b= 1.0 and k = k, = 0.25 the first 20 roots are listed in the Table. Witk=® the FMZ

transform may be rewritten
b

fun) = frf(r)SO(kl, ka, pnr)dr 23)
a
together with the inversion formula
£(r) = Z f(lln)So((L(l, Ko, tnr) "
n
n=1
where , 2
b 1 ) o L 2
o 2 H @} Sika, o, unb) - 2 t @} So(K, k2, und) (25)

Finally, the operational property is given by (18) with- wheref_(,un) is now given by (23).

Tablel

First Positive 20 Roots of Equation (22) for a= 0.5,b = 1.0, k;= ks = 0.25
4.100035 21.114158 38.493181 55.917084
7.399590 24.582173 41.976075 59.403888
10.781796 28.055419 45.460120 62.891112
14.206770 31.532288 48.945081 66.378691
17.654071 35.011765 52.430780 69.866573
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