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INTRODUCTION

The classical theory of nonnegative matrices has proved that there exists a nonnegative eigenvalue ρ(A) for
a nonnegative square matrix A; where ρ(A) is the spectral radius of A.

Our interest is focused on nonnegative matrices with central symmetric structure. Recall that a matrix A
is said to be centrosymmetric if A = JAJ where J is the exchange matrix with ones on the cross diagonal
(bottom left to top right) and zeros elsewhere. Centrosymmetric matrices appear in the numerical solution of
certain differential equations[2], in the study of Markov processes[6] and in various physics and engineering
problems[3], we will review some basic notations frequently used.

Definition 0.1[1] A matrix A = (ai j)n×n ∈ Rn,nis called a centrosymmetric matrix, if the elements of A satisfy
the relation

JnAJn = A (1)

whereJn = (en, en−1, · · · , e1), eidenotes the standard unit vector with the ith entry 1.

For simplicity, we restrict our attention to the case of even, n = 2m.

For n = 2m, a centrosymmetric matrix can be written as the form[1,9]:

A =

[
B JmCJm

C JmBJm

]
with B,C ∈ Rm,m.

We have known the following results, see[1,2]
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Lemma 0.1[1]. Let A ∈ Rn,n be a centrosymmetric matrix, for n = 2m, let P =
√

2
2

[
Im Im

−Jm Jm

]
, then

P−1AP =

[
B − JmC

B + JmC

]
.

We shall use the concept of nonnegative matrices[4,11].

Definition 0.2 Let B = (bi j)n×m ∈ Rn,m and A = (ai j)n×m ∈ Rn,m. We write B ≥ 0 (> 0) if all bi j ≥ 0 (> 0);
A ≥ B (A > B) if A − B ≥ 0(A − B > 0).
If A ≥ 0, we say A is a nonnegative, and if A > 0, we say A is positive.

1. THE SPECTRAL RADIUS OF NONNEGATIVE CENTROSYM-
METRIC MATRICES

Lemma 1.1[4] Let A = (ai j)n×n, B = (bi j)n×n ∈ Rn,n, if |A| ≤ B,then

ρ(A) ≤ ρ(|A|) ≤ ρ(B),

where |A| = (
∣∣∣ai j

∣∣∣)n×n, and ρ(A) is the spectral radius of A.

According to the Lemma 2.1 and Lemma 1.1, we have the following result.

Theorem 1.1 Let A ∈ Rn,n be a nonnegative centrosymmetric matrix,

A =

[
B JmCJm

C JmBJm

]
, thenρ(A) = ρ(B + JmC).

Proof. From the hypothesis, we have that A is nonnegative. Then, according to the definition, B and C are
both nonnegative. By Lemma 1.1,

P−1AP =

[
B − JmC

B + JmC

]
.

Note that B and C are both nonnegative, which implies

−B − JmC ≤ B − JmC ≤ B + JmC.

That is, |B − JmC| ≤ B+ JmC. From Lemma 2.1, we can deduce that ρ(B− JmC) ≤ ρ(B+ JmC). It is obvious
that

ρ(A) = ρ(P−1AP) = max {ρ(B − JmC), ρ(B + JmC)}
we get ρ(A) = ρ(B + JmB).

2. AN ALGORITHM ON THE SPECTRAL RADIUS OF IRRE-
DUCIBLE NONNEGATIVE MATRICES

Lemma 2.1[11] Let B ∈ Rn,n be a positive (or irreducible nonnegative) matrix, and z = (z1, · · · , zn)T , y =

(y1, · · · , yn)T .

(1) If z ≥ 0,z , 0 and Bz = λz, then z > 0, λ = ρ(B).
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(2) IfBz = ρ(B)z, By = ρ(B)y, z > 0, y > 0 then y = kz, k > 0

Lemma 2.2[4] Let A ∈ Rn,n be an irreducible nonnegative matrix, then

(I + A)n−1 > 0

where I is the identity matrix of order n. And for any nonnegative nonzero vector x, we have (I +A)n−1x > 0.

Definition 2.2 (C-W function)[7] Let A = (ai j)n×n be an irreducible nonnegative matrix. For any vector
x = (x1, · · · , xn)T > 0, FA (x) and GA (x) are defined as

FA(x) = min
1≤i≤n

(Ax)i

xi
; GA(x) = max

1≤i≤n

(Ax)i

xi
.

Lemma 2.3[9] Let A = (ai j)n×n ∈ Rn,n be an irreducible nonnegative matrix, FA(x) and GA(x) are the C-W
functions of A. Then

(1) FA(tx) = FA(x),GA(tx) = GA(x) for t > 0.

(2) Ax − kx ≥ 0 (x > 0) implies FA(x) ≥ k, and

Ax − mx ≤ 0 (x > 0) implies GA(x) ≤ m.

(3) If x > 0 and y = (I + A)n−1x, then FA(x) ≤ FA(y),GA(x) ≥ GA(y).

Let A ∈ Rn,n be an irreducible nonnegative matrix of, and B = (I + A)n−1. Let the initial vector x(0) =

(x(0)
1 , · · · , x(0)

n )T > 0. Define the iteration as follows:

y(k) = Bx(k−1) = (I + A)n−1x(k−1), x(k) = [1/
∥∥∥y(k)

∥∥∥
1]y(k), k = 1, 2, · · · (2)

where ‖x‖1 =
n∑

i=1
|xi|. It is obviously that

∥∥∥x(k)
∥∥∥

1 = 1(k = 1, 2, · · · ).

Theorem 2.1 (Convergent Theorem) Let A ∈ Rn,n be an irreducible nonnegative matrix, B = (I + A)n−1,{
x(k) : k = 1, 2, · · ·

}
is a vector sequence defined in (2). Then

lim
n→∞

FA(x(k)) = lim
n→∞

GA(x(k)) = ρ(A)

and lim
n→∞

x(k) = z, where z satisfies z > 0, Az = ρ(A)z, and ‖z‖1 = 1.

Proof. According to Definition 2.2, we can see

Ax − FA(x)x ≥ 0, for x > 0. (3)

By Lemma 2.2(1),(3) and the fact that x(k) = [1/
∥∥∥y(k)

∥∥∥
1]y(k), we know

FA(x(k)) ≤ FA(x(k+1)), k = 1, 2, · · ·

This means {FA(x(k))} is a monotonic sequence bounded above (from Lemma 2.3 (4)). Therefore, {FA(x(k))}
is a convergent sequence. Let lim

n→∞
FA(x(k)) = l.

It is obvious that
x(k) > 0,

∥∥∥x(k)
∥∥∥ = 1(k = 1, 2, · · · ) (4)

So {x(k)} is a bounded vector sequence. Let {v(k)}(k = 1, 2, · · · ) be a arbitrary convergent subsequence of
{x(k)}, and z = lim

k→∞
v(k). From (2),(3),(4), we obtain

‖z‖1 = 1, z ≥ 0, Bz = λz, Az − lz > 0. (5)

12



LI Hongyi/Studies in Mathematical Sciences Vol.3 No.1, 2011

By Lemma 2.1, Bz = λz = ρ(B)z, z > 0. Besides, Lemma 2.2 and (3.4) imply that λ > 0. Next we will show
Az − lz = 0. If Az − lz , 0, then

Az − lz = A(
1
λ

Bz) − l(
1
λ

Bz) =
1
λ

B(Az − lz) > 0

from Lemma 2.2. By Definition 3.2 and Lemma 2.3, we know that

l < FA(z) = lim
k→∞

FA(vk) = l

which contradicts. Thus, Az − lz = 0, or Az = lz. From Lemma 2.1, we get

l = ρ(A), Az = ρ(A)z (6)

Assume that {uk}(k = 1, 2, · · · ) is another convergent subsequence of {xk} and lim
k→∞

u(k) = y, then we can also
prove

‖y‖1 = 1, y > 0, By = ρ(B)y.

However, by Lemma 2.1, we have y = z. That is to say, any convergent subsequence of {xk}(k = 1, 2, · · · )
converges to the same vector z. Thus, {xk} itself is convergent and lim

k→∞
xk = z. From (6), we know that

lim
n→∞

FA(x(k)) = l = ρ(A).

Similarly, we can prove the following results

lim
k→∞

GA(x(k)) = h, Az − hz ≤ 0, lim
k→∞

x(k) = z > 0.

Likewise, we get Az = hz, h = ρ(A), lim
k→∞

GA(x(k)) = ρ(A),

Corollary 2.1 From the proof above, we have

0 < FA(x(0)) ≤ FA(x(1)) ≤ · · · ≤ FA(x(k)) ≤ · · · ≤ ρ(A) ≤ · · · ≤ GA(x(k)) ≤ · · · ≤ GA(x(1)) ≤ GA(x(0)).

Based on this theorem, we present a algorithm to compute the spectral radius of nonnegative square matri-
ces:

Algorithm 1.

Step1. Let x(0) = (1, 1, · · · , 1)T (or any other positive vector), give precision ε > 0.

Step2. Compute x(k) from x(k−1), k = 1, 2, · · ·

y(k) = (I + A)n−1x(k−1), x(k) = [1/
n∑

i=1

y(k)
i ]y(k)

Step3. Compute FA(x(k)), GA(x(k)):

FA(x) = min
1≤i≤n

(Ax)i

xi
; GA(x) = max

1≤x≤n

(Ax)i

xi
.

Step4. If GA(x(k)) − FA(x(k)) < ε, goto Step5; otherwise go back to Step 2.

Step5. Let λ = 1
2 (GA(x(k)) + FA(x(k))), and λ is the approximation of the spectral radius of A.

We have the following result which shows Algorithm 1 is convergent.

Theorem 2.2 Given a precision ε > 0, if

GA(x(k)) − FA(x(k)) < ε, then
∣∣∣ρ(A) − λ(k)

∣∣∣ < ε
2 ,whereλ(k) = 1

2 (FA(xk) + GA(xk)).
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3. COMPUTATION OF SPECTRAL RADIUS OF NONNEGATIVE
CENTROSYMMETRIC MATRICES

As a application of Theorem 2.1 and Algorithm 1, we present Algorithm 2 for computing the spectral
radius of a nonnegative centrosymmetric matrix

For simplicity, we assume B is irreducible. We have the following result.

Lemma 3.1 Let B,C ∈ Rn,n be nonnegative matrices. If B is irreducible, then B + C is irreducible.

From the lemma above, we know that D = B + JmC is irreducible.

Algorithm 2

Step1. Compute D: D = B + JmC.

Step2. Let x(0) = (1, 1, · · · , 1)T , give precision ε > 0.

Step3. Compute x(k) from x(k−1) , k = 1, 2, · · ·

y(k) = (I + D)n−1x(k−1), x(k) = [1/
n∑

i=1

y(k)
i ]y(k).

Step4. Compute FA(x(k)), GA(x(k)).

Step5. If GD(x(k)) − FD(x(k)) < ε, go to Step6; otherwise go back to Step 2.

Step6. Compute λ:λ = 1
2 (GD(x(k)) + FD(x(k))).

Here λ is the approximation of ρ(A) with the precision ε.

Example 1. Given a 8 × 8 nonnegative centrosymmetric matrix

A =



0.4326 0.8671 0.9441 0.9989 1.2025 1.5937 0.5928 0.7633
0.6656 0.7258 1.3362 0.6900 1.1908 1.2540 1.0668 1.1892
1.2533 0.5883 0.7143 0.8156 0.6686 0.8580 1.1393 1.1909
0.8768 1.1832 1.6236 0.7119 1.2902 0.6918 1.3645 1.1465
1.1465 1.3645 0.6918 1.2902 0.7119 1.6236 1.1832 0.8768
1.1909 1.1393 0.8580 0.6686 0.8156 0.7143 0.5883 1.2533
1.1892 1.0668 1.2540 1.1908 0.6900 1.3362 0.7258 0.6656
0.7633 0.5928 1.5937 1.2025 0.9989 0.9441 0.8671 0.4326



.

Then we have

B =



0.4326 0.8671 0.9441 0.9989
0.6656 0.7258 1.3362 0.6900
1.2533 0.5883 0.7143 0.8156
0.8768 1.1832 1.6236 0.7119


, C =



1.1465 1.3645 0.6918 1.2902
1.1909 1.1393 0.8580 0.6686
1.1892 1.0668 1.2540 1.1908
0.7633 0.5928 1.5937 1.2025



Imput A and ε = 1 × 10−6, and use the algorithm 2. The result comes out as λ = 7.875600. We recompute
the spectral radius of A by MATLAB 7.1, and get ρ(A) = 7.875600. This example shows that Algorithm 2
is an efficient methods to compute the spectral radius of a nonnegative centrosymmetric matrix.
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