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Abstract: In this paper, we construct new solitary solutions to nonlinear PDEs by the rational Sine and
Cosine method. Moreover, the periodic solutions and bell-shaped solitons solutions to the Benjamin-Bona-
Mahony and the Gardner equations are obtained. New solutions to Broer-Kaup (BK) system are also ob-
tained. Finally, the solution of a two-component evolutionary system of a homogeneous KdV equations of
order 2 has been investigated by the proposed method.
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INTRODUCTION

It is well known that many models in mathematics and physics are described by nonlinear differential
equations. Nowadays, research in physics devotes much attention to nonlinear partial differential evolu-
tion model equations, appearing in various fields of science, especially fluid mechanics, solid-state physics,
plasma physics, and nonlinear optics[5,9]. Among these nonlinear evolution equations, is the simplest math-
ematical known as Benjamin-Bona-Mahony equation, that produce a special kind of soliton solutions[2],
and described by the following normalized system

ut = uxxt − ux − uux. (0.1)

The mathematical theory of nonlinear evolution equations starting form KdV equation and the modified
KdV (mKdV) equation, contains some important equations, such as Gardner’s equation, that is also known
as the mixed KdV-mKdV equation is very widely studied in various area of physics. The Gardner equation
shows up, particularly, in the context of internal gravity waves in a density-stratified ocean. The following
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version of this equation is going to be studied in this paper

ut = uxxx + 6uux. (0.2)

Alongside the above two equations, there is also the two-component evolutionary system of a homogeneous
KdV equations that arise quite frequently in mathematical physics, and has the following forms

ut = −uux − vx (0.3)

vt = −ux − (uv)x − uxxx

and
ut = −3vxx (0.4)

vt = uxx + 4u2.

Large varieties of physical, chemical, and biological phenomena are governed by nonlinear partial differ-
ential equations. One of the most exciting advances of nonlinear science and theoretical physics has been
the development of methods to look for exact solutions of nonlinear partial differential equations. Exact
solutions to nonlinear partial differential equations play an important role in nonlinear science, especially
in nonlinear physical science, since they can provide much physical information and more insight into the
physical aspects of the problem and thus lead to further applications. In the past decade, many signifi-
cant methods have been proposed for obtaining solutions of nonlinear partial differential equations such as
the Sinc-Galerkin method[14,5], the finite difference method[4], the Adomian decomposition method[13], the
Differential transform method[15], the extended tanh-function method[9,11,12,10], the sine-cosine method[3],
the improved G′/G expansion method[16], the Exp-function method[1], the direct algebraic method, Hi-
rota’s method, inverse scattering method, Backlund transformation, the Wadati trace method, Hirota bilin-
ear forms, pseudo spectral method, the tanh-sech method, the Riccati equation expansion method and so
on.

The main aim of this paper is to apply the rational sine-cosine function method with the help of symbolic
computation to obtain new soliton solutions of (0.1), (0.2) and the nonlinear systems (0.3), (0.4). By
using rational sine-cosine function method, many kinds of nonlinear partial differential equations arising in
mathematical physics have been solved successfully in[6,7,8].

1. THE RATIONAL SINE AND COSINE FUNCTIONS METHODS

Since we restrict our attention to traveling waves, we use the transformation u(x, t) = u(ζ), where the wave
variable z = x−ct, converts the the nonlinear PDE to an equivalent ODE. The rational sine-cosine algorithm
admits the use of the ansatze[6,7,8]

u(x, t) =
a0

1 + a1 cos(µz)
(1.1)

and the ansatze
u(x, t) =

a0

1 + a1 sin(µz)
(1.2)

where a0, a1, µ and c are parameters that will be determined. Substituting (1.1) or (1.2) into the reduced
ODE gives a polynomial equation of cosine or sine terms. We then collect the coefficients of the resulting
triangle functions and setting them to zeros, to get a system of algebraic equations among the unknowns
a0, a1, µ and c. The problem is now completely reduced to an algebraic one. Having determined a0, a1, µ
and c by algebraic calculations or by using Mathematica, the solutions proposed in (1.1) and in (1.2) follow
immediately.
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2. APPLICATION I

In this section we apply the proposed method for two physical models that admit solitary solutions.

2.1 Benjamin-Bona-Mahony (BBM) Equation

Consider the BBM equation
ut = uxxt − ux − uux. (2.1)

Using the wave variable ζ = x − ct carries (2.1) into the ODE

(1 − c)u +
1
2

u2 + cu′′, (2.2)

obtained after integrating the ODE and setting the constant of integration to zero.

Substituting (1.1) into (2.2) gives

2 + a0 − 2c + a1(4 + a0 + 2c(−2 + µ2)) cos(µz)+
2a2

1(1 + c(−1 + µ2)) cos2(µz) + 4a2
1cµ2 sin2(µz) = 0

(2.3)

The above equation is satisfied only if the following system of algebraic equations hold

0 = 2 + a0 + c(−2 + 4a2
1µ

2) (2.4)

0 = 4 + a0 + 2c(−2 + µ2)

0 = −1 + c + cµ2

which leads to

a0 = − 6µ2

1 + µ2 , a1 = ∓1, c =
1

1 + µ2 , (2.5)

where µ is any arbitrary constant. Therefore, the solution of (2.1) is

u1(x, t) = − 6µ2

(1 + µ2)(1 ∓ cos
(
µ(x − 1

1+µ2 t)
)
)
. (2.6)

Now, if we use the ansatze (1.2) instead of (1.1), then we get the same system (2.4) and therefore, one more
solution follows and given by

u2(x, t) = − 6µ2

(1 + µ2)(1 ∓ sin
(
µ(x − 1

1+µ2 t)
)
)
. (2.7)

2.2 Gardner Equation

Consider the Gardner equation
ut = uxxx + 6uux. (2.8)

Using the wave variable ζ = x − ct carries (2.8) into the ODE

cu + 3u2 + u′′ = 0, (2.9)
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Figure 1
Plots of the first Obtained Solution for Equation (2.1) when µ = 1

obtained after integrating the ODE and setting the constant of integration to zero.

Substituting (1.1) into (2.9) gives

3a0 + c + a1(3a0 + 2c + µ2) cos(µz) + a2
1(c + µ2) cos2(µz) + 2a2

1µ
2 sin2(µ) = 0. (2.10)

The equation is satisfied only if the following system of algebraic equations hold

0 = 3a0 + c + 2a2
1µ

2 (2.11)

0 = 3a0 + 2c + µ2

0 = c − µ2

which leads to
a0 = −µ2, a1 = ∓1, c = µ2, (2.12)

where µ is any arbitrary constant. Therefore, the solution of (2.8) is

u1(x, t) = − µ2

1 ∓ cos
(
µ(x − µ2t)

) . (2.13)

Using (1.2), one more solution follows and given by

u2(x, t) = − µ2

1 ∓ sin
(
µ(x − µ2t)

) . (2.14)

3. APPLICATION II

In this section we apply the rational sine and cosine method for two systems of evolutionary equations.

4



Marwan Alquran; Kamel Al-Khaled and Hasan Ananbeh/Studies in Mathematical Sciences Vol.3 No.1, 2011

Figure 2
Plots of the First Obtained Solution for Equation (2.8) when µ = 1

3.1 Broer-kaup System

Consider the Broer-Kaup system
ut = −uux − vx (3.1)

vt = −ux − (uv)x − uxxx

Using the wave variable ζ = x − ct carries (3.1) into the ODEs

v = cu − 1
2

u2 (3.2)

v =
u + u′′

c − u
obtained after integrating the ODEs and setting the constant of integration to zero. From (3.2) we have

(c − u)(u − 1
2

u2) − u − u′′ = 0. (3.3)

Substituting (1.1) into (3.3) gives

−2 + a2
0 − 3a0c + 2c2 − a1(4 + 3a0c − 4c2 + 2µ2) cos(µz)+

2a2
1(−1 + c2 − µ2) cos2(µz) − 4a2

1µ
2 sin2(µz) = 0

(3.4)

The above equation is satisfied only if the following system of algebraic equations hold

0 = −2 + a2
0 − 3a0c + 2c2 − 4a2

1µ
2 (3.5)

0 = 4 + 3a0c − 4c2 + 2µ2

0 = −1 + c2 + µ2

which leads to

a0 =
2(−1 + c2)

c
, a1 = ±1

c
, µ = ±

√
1 − c2, (3.6)

5



Marwan Alquran; Kamel Al-Khaled and Hasan Ananbeh/Studies in Mathematical Sciences Vol.3 No.1, 2011

where the constant cmust be in the real open interval (0, 1). Therefore, the solutions of (3.1) are

u1(x, t) =
2(−1 + c2)

c ∓ cos
(√

1 − c2(x − ct)
) (3.7)

v1(x, t) =
2(−1 + c2)2

(
c ∓ cos

(√
1 − c2(x − ct)

))2 +
2c(−1 + c2)

c ∓ cos
(√

1 − c2(x − ct)
) .

Using the ansatze (1.2) gives the same system obtained in (3.5) and then, the following solutions result as

u2(x, t) =
2(−1 + c2)

c ∓ sin
(√

1 − c2(x − ct)
) (3.8)

v2(x, t) =
2(−1 + c2)2

(
c ∓ sin

(√
1 − c2(x − ct)

))2 +
2c(−1 + c2)

c ∓ sin
(√

1 − c2(x − ct)
) .

Figure 3
Plots of the First Obtained Solution for System (3.1) when c = 0.5

3.2 Two-component KdV Evolutionary System of Order 2

Consider the two-component evolutionary system of a homogeneous KdV equations of order 2

ut = −3vxx (3.9)

vt = uxx + 4u2

Using the wave variable ζ = x − ct carries (3.9) into the ODE

−cu′ = −3v′′ (3.10)

−cv′ = u′′ + 4u2.
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From (3.10), we have

u =
3
c

v′, (3.11)

and therefore,
c2u + 12u2 + 3u′′ = 0 (3.12)

Substituting (1.1) into (3.12) gives

12a0 + c2 + a1(12a0 + 2c2 + 3µ2) cos(µz) + a2
1(c2 + 3µ2) cos2(µz) + 6a2

1µ
2 sin2(µz) = 0. (3.13)

The above equation is satisfied only if the following system of algebraic equations hold

0 = 12a0 + c2 + 6a2
1µ

2 (3.14)

0 = 12a0 + 2c2 + 3µ2

0 = c2 − 3µ2

which leads to

a0 =
−3µ2

4
, a1 = ±1, c = ±

√
3µ, (3.15)

where µ is any arbitrary constant. Therefore, the solutions of (3.9) are

u1(x, t) = − 3µ2

4(1 − cos
(
µ(x +

√
3µt)

) (3.16)

v1(x, t) = −
√

3µ2

4
cot

µ(x +
√

3µt)
2



and

u2(x, t) = − 3µ2

4(1 + cos
(
µ(x +

√
3µt)

) (3.17)

v2(x, t) =

√
3µ2

4
tan

µ(x +
√

3µt)
2

 .

Using the ansatze (1.2) gives the same system obtained in (3.14) and then, two more solutions follow

u3(x, t) = − 3µ2

4(1 − sin
(
µ(x +

√
3µt)

) (3.18)

v3(x, t) = −
√

3µ2

2
(
−1 + cot

(
µ(x+

√
3µt)

2

))

and

u4(x, t) = − 3µ2

4(1 − sin
(
µ(x +

√
3µt)

) (3.19)

v4(x, t) = −
√

3µ2

2
(
1 + cot

(
µ(x+

√
3µt)

2

))
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Figure 4
Plots of the First Obtained Solution for System (3.9) when µ = 1

CONCLUSION

In this work we developed the rational sine-cosine method to handle some nonlinear evolution equations.
The simplified form of the rational sine-cosine methods was applied to establish soliton solutions to non-
linear evolution equations. The method is applicable to several types of equations, easy to use, and may
provide us a straightforward, effective and alternative mathematical tool for generating soliton solutions,
and can be extended to other nonlinear problem in mathematical physics.
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