Properties of the Extended Whittaker Function
Abstract
In this article, we define an extended form of the Whittaker function by using extended confluent hypergeometric function of the first kind and study several of its properties. We also define the extended confluent hypergeometric function of the second kind and show that this function occurs naturally in statistical distribution theory.
Keywords
Full Text:
PDFReferences
[1] Chaudhry, M. A. , & Zubair S. M. (1994). Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55, 303–324.
[2] Aslam Chaudhry,M., Asghar Qadir, M. Rafique & Zubair, S. M. (1997). Extension of Euler’s beta function, J. Comput. Appl. Math., 78(1), 19–32.
[3] Chaudhry, M. A., Qadir, A., Srivastava, H. M. et.al. (2004). Extended hypergeometric and conuent hypergeometric functions. Appl. Math. Comput., 159(2), 589-602
[4] Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products. Translated from the Russian. Sixth edition. Translation edited and with apreface by Alan Jerey and Daniel Zwillinger. Academic Press, Inc., San Diego, CA
[5] Gupta, A. K., & Nagar, D. K. (2000). Matrix variate distributions, Chapman & Hall/CRC, Boca Raton,
[6] Iranmanesh, A. , Arashi, M. , Nagar, D. K. et,al.. (2013). On inverted matrix variate gamma distribution. Comm. Stat. Theor. Meth., 42(1), 28–41.
[7] Johnson, N. L., Kotz, S. , & Balakrishnan, N. (1994). Continuous univariate distributions-2 . Second Edition. John Wiley & Sons, New York
[8] Luke, Y. L. (1969). The special functions and their approximations, Vol. 1 . Academic Press, New York
[9] Miller, A. R. (1998). Remarks on a generalized beta function. J. Comput. Appl. Math., 100(1), 23–32.
[10] Nagar, D. K. , Rold´an-Correa , A. , & Gupta, A. K. (2013). Extended matrix variate gamma and beta functions. J. Multivariate Anal., 122, 53–69
[11] Nagar, D. K. & Rold´an-Correa , A., (2013). Extended matrix variate beta distributions. Progr. Appl. Math., 6(1), 40–53.
[12] Whittaker, E. T. (1903). An expression of certain known functions as generalized hypergeometric functions. Bull. Amer. Math. Soc., 10(3), 125–134.
[13] Whittaker, E. T. & Watson, G. N. (1996). A course of modern analysis (4 ed). Cambridge Mathematical Library, Cambridge University Press, Cambridge.
DOI: http://dx.doi.org/10.3968/j.pam.1925252820130602.2807
DOI (PDF): http://dx.doi.org/10.3968/g5268
Refbacks
- There are currently no refbacks.
Copyright (c)
Reminder
If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the "CATEGORIES", or "JOURNALS A-Z" on the right side of the "HOME".
We only use the follwoing mailboxes to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
pam@cscanada.org
pam@cscanada.net
Articles published in Progress in Applied Mathematics are licensed under Creative Commons Attribution 4.0 (CC-BY).
ROGRESS IN APPLIED MATHEMATICS Editorial Office
Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.
Telephone: 1-514-558 6138
Http://www.cscanada.net
Http://www.cscanada.org
E-mail:office@cscanada.net office@cscanada.org caooc@hotmail.com
Copyright © 2010 Canadian Research & Development Center of Sciences and Cultures