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Abstract: In this paper, the definition of a Q-P quantale module and some
relative concepts were introduced. Based on which, some properties of the
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generated by a set were obtained. It was proved that the category of Q-P
quantale modules is algebraic.
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1. INTRODUCTION

Quantale was proposed by Mulvey in 1986 for studying the foundations of quantum
logic and for studying non-commutation C*-algebras. The term quantale was coined
as a combination of “quantum logic” and “locale” by Mulvey in [1]. The systematic
introduction of quantale theory came from the book [2], which written by Rosenthal
in 1990.
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Since quantale theory provides a powerful tool in studying noncommutative
structures, it has a wide applications, especially in studying noncommutative C*-
algebra theory [3], the ideal theory of commutative ring [4], linear logic [5] and so
on. So, the quantale theory has aroused great interests of many scholar and experts,
a great deal of new ideas and applications of quantale have been proposed in twenty
years [6-18].

Since the ideal of quantale module was proposed by Abramsky and Vickers [19],
the quantale module has attracted many scholars eyes. With the development of the
quantale theory, the theory of quantale module was studied deeply in [20-25]. In
this paper, some properties of the category of Q-P quantale modules was discussed,
especially that the category of Q-P quantale modules is algebraic was proved.

2. PRELIMINARIES

Definition 2.1 [2] A quantale is a complete lattice Q with an associative binary
operation “&” satisfying:

a&(V b)) = V (a&d;) and (\/ b)&a =V (b;&a),

iel i€l i€l i€l
for all a,b; € @, where I is a set, 0 and 1 denote the smallest element and the
greatest element of @) respectively.

Definition 2.2 A nonzero element a in a quantale @) is said to be a nonzero
divisor if for all nonzero element b € @) such that a&b # 0, b&a # 0. Q is nonzero
divisor if every a € @ is a nonzero divisor.

Definition 2.3 Let Q, P be a quantale, a Q-P quantale module over @, P
(briefly, a Q-P-module) is a complete lattice M, together with a mapping T :
Q x M x P — M satisfies the following conditions:

(1) T(V ai,m, V b;) =V 'V T(ai, m, b;);

el jeJ ieljed
(2) T(CL, ( \/ mk)» b) = \/ T(a,mk, b);
ke K ke K

(3) T(a&b,m,c&d) = T(a,T(b,m,c),d) for all a;,a,b € Q, bj,c,d € P, my,m €
M. We shall denote the Q-P quantale module M over @, P by (M, T).

If @ is unital quantale with unit e, we define T'(e, m,e) = m for all m € M.

Example 2.4 (1) Let Q = P = {0,a,b,¢,1} be a set, M = {0,d,e,1} is a
complete lattice. The order relations of Q) and M are given by the following figure
1 and 2, we give a binary operator “&” on @) satisfying the diagram 1.

& 0 a b ¢ 1 !
00 0 0 OO
al 0 b c a1 d ¢
bl 0 ¢ a b 1
cl 0 a p c 1 0
110 1 1 1 1

Figure 1 Diagram 1 Figure 2

We can prove that @ is a quantale.
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Now, define a mapping T': Q x M x Q — M such that T'(z, m,y) = m for all
z,y € Q, m € M. Then (M, T) be a Q-P quantale module.

(2) Let @ = P = {0,a,b,1} be a complete lattice. The order relation on @
satisfies the following Figure 3 and the binary operation of @ satisfies the diagram
2:

: & 0 a b 1
00 0 0 O

a b al 0 a 0 a
bl 0 0 b b

0 10 a b1
Figure 3 Diagram 2

It is easy to show that (Q, &) is a quantale. Let M = {0,a,1} C @, then M is a
complete lattice with the inheriting order on Q. Now, we define T': @ x M x Q@ —
M satisfies T'(x, m,y) = x&mé&y for all z,y € Q, m € M. Then (M, T) is a Q-P
quantale module.

Definition 2.5 Let @, P be a quantale, (M1, T7) and (Ms, T3) are Q-P quantale
modules. A mapping f: M; — M> is said to be a Q — P quantale module
homomorphism if f satisfies the following conditions:

(1) FOV mi) =V f(mi);

iel iel

(2) f(T1(a,m,b)) = Ts(a, f(m),b) for all a € Qb € P, my,m € M.

Definition 2.6 Let (M, Tys) be a @ — P quantale module over @, P, N be a
subset of M, N is said to be a submodule of M if N is closed under arbitrary join
and Ty (a,n,b) € N for all a € Qb€ P, n € N.

Definition 2.7 [26] A concrete category (A, U) is called algebraic provided that
it satisfies the following conditions:

(1) A has coequalizers;

(2) U has a left adjoint;

(3) U preserves and reflects regular epimorphisms.

3. THE CATEGORY OF Q-P QUANTALE MODULES IS
ALGEBRAIC

Definition 3.1. Let @, P be a quantale, gModp be the category whose objects
are the Q-P quantale modules of @), P, and morphisms are the Q-P quantale module
homomorphisms, i.e.,

Ob(qModp)={ M : M is Q-P quantale modules},

Mor(qgModp)={f : M— N is the Q-P quantale modules homorphism}.
Hence, the category gModp is a concrete category.

Definition 3.2. Let Q, P is a quantale, (M,Th;) is a Q-P quantale module,
R C M x M. The set R is said to be a congruence of Q-P quantale module on M
if R satisfies:

(1) R is an equivalence relation on M;

(2) If (m;,n;) € R for all ¢ € I, then (Z\G/I mi,i\e/lni) € R;
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(3) If (m,n) € R, then (Tps(a,m,b), Tps(a,n,b)) € R for all a € Q,b € P.

We denote the set of all congruence on M by Con(gMp), then Con(qMp) is a
complete lattice with respect to the inclusion order.

Let @Q, P be a quantale, M is a Q-P quantale module, R is a congrence of Q-P
quantale module on M, define the order relation on M/R such that [m] < [n] if and
only if [m V n] = [n] for all [m], [n] € M/R.

Theorem 3.3. Let Q, P be a quantale, M be a Q-P quantale module, R be a
congrence of double quantale module on M. Define Ty : Q x M/Rx P — M/R
such that Ty gr(a,[m],b) = [Tar(a, m,b)] for all a € Q,b € P, [m] € M/R, then
(M/R,Tyg) is a Q-P quantale module and 7 : m — [m] : M — M/R is a Q-P
quantale module homomorphisms.

Proof. (1) We will prove that “ < ”is a partial order on M/R, and T/ is well
defined. In fact, for all [m],[n],[l]] € M/R,

(i) It’s clearly that [m] < [m];

(i) Let [m] < [n], [n] < [m], then [m V n] = [n]land[n VvV m] = [m], thus [m] = [n];

(iii) Let [m] < [n], [n] < [I], then [m V n] = [nland[n V1] = [l], therefore
mvi=[mvVvVnVvD]=[(mvVvn)Vel =[nVi]=]].

If [m1] = [mze], then (mq1,m2) € R, (Tps(a,m,b), Tas(a,n,b)) € Rforalla,b € Q,
ie., [Tn(a,m,b)] = [Tar(a,n,b)], thus Ty is well defined.

(2) We will prove that (M/R, <) is a complete lattice. Let {[m;] | ¢ € I} C M/R,
we have

(i) Since [m; V (\/ my)] = [V my] for all i € I, then [m;] < [\ my];

i€l i€l i€l

(ii) Let [m] € M/R and [m;] < [m] for all ¢ € I, then [m; V m] = [m] for all

1 € 1, hence, [(\/ m;) vm] =1V (m; Vm)] =[m], ie, [V m;] <[m].

iel iel icl
M/R
Thus V [m] =V mu.
iel iel

(3) Forall {a; |i eI} CQ, {bj|jeJ}CQ, {[m]]|!le H} C M/R,
a,b € Q,c,d € P, [m] € M/R, we have that
(i) TM/R(_\G/IGM[ m], \/ bj) = [Ta(V ai,m, V b))l =1V V Tu(ai,m,b;)]

iel ieljeJ
= 4\/ '\/ Talai,m, b} \/ V TM/R(%[ ]abj)§
el jed el jed
() Tasy (e, (V mi]).) = (e [V my).6) = (s (V ). 0)) = [V Tos(amy. )
= _\G/J[TM(avmjvb)] = '\G/JTM/R(CL’ [mj]ab);
(iii) Tar/r(ad&eb, [m], c&d) = [Tar(a&eb, m, c&d)] = [Trs(a, Tas(b,m, c),d)]

= TM/R(a7 [TM(bv m, C)], d) TM/R(av TM/R(b7 [ ]7 C)a d)
Then (M/R,Tyyr) is a Q-P quantale module.
(4) For all {[m;] |i€I} CM/R, a€Q)beP, [m]eM/R,
m(V mi) = [V mi] =V [mi] =V m(m);

iel el iel el
m(Tar(a,m, b)) = [Tar(a,m, b)] = Tag/r(a, [m],b) = Try/r(a, 7(m), b).
Som:mw [m]: M — M/R is a Q-P quantale module homomorphisms. O

Theorem 3.4. Let Q, P be a quantale, M a double quantale module, then
A ={(z,z) |z € M} is a congrence of Q-P quantale module on M.

Theorem 3.5. Let @, P be a quantale, M and N be Q-P quantale modules,
f: M — N a Q-P quantale module homphorism, R a Q-P quantale module
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congrence on N. Then f~Y(R) = {(z,y) € M x M | (f(z), f(y)) € R} is a Q-P
quantale module congrence on M.

Theorem 3.6. Let @O, P be a quantale, M and N are Q-P quantale modules,
f: M — N be a Q-P quantale module homphorism. Then f~1(A) = {(z,y) €
M x M| f(x) = f(y)} be a Q-P quantale module congrence on M, where A =
{(a,a) | a € N}.

Let @, P be a quantale, M be a Q-P quantale module, R C M x M, since
Con(gMp) is a complete lattice, there exists a smallest Q-P quantale congrence
containing R , which is the intersection all the Q-P quantale module congrence
containing R on M. We said that this congrence is generated by R.

Theorem 3.7. The category gModp has coequalizer.

E/

=

Proof. Let @, P be a quantale, (M, Ty) and (N,Tyx) be Q-P quantale modules, f
and g be Q-P quantale module homomorphisms, Suppose R is the smallest con-
grence of the Q-P quantale modules on N, which contain {(f(z),g(x)) | x € M}.
Let E = N/R, 7 : N — N/R is the canonical mapping, then (N/R,Ty/g) is a
Q-P quantale module and 7 is a Q-P quantale module homomorphisms by theorem
3.3 . We will prove that (7, F) is the coequalier of f and g. In fact,

(1) mo f =mogis clear

(2) Let (E',Tgr') be a Q-P quantale module, h : N — E’ be a Q-P quantale
module homomorphisms such that ho f = hog. Let Ry = h™'(A), where A =
{(z,z) | = € E'}. By theorem 3.5, we can see that R; is a congrence of Q-P quantale
module on N. Since h(f(z)) = h(g(z)) for all z € M, then (f(x),g(x)) € R;.
Define h : N/R — E’such that h([n]) = h(n) for all [n] € Q/R. Let ny,ny € N
and (n1,n2) € R, then (ny,n2) € Ry, and we have that h(n1) = h(ny). Therefore h
is well defined.

For all {[n;] |i € I} C N/R, a,b € Q, [n] € N/R, we have that

h(V [ni]) = (L ni]) = h(V ni) = V h(ni) = V h([ni]);

icl i€l iel icl i€l

h(TN/R(aa [n],b)) = h([T'(a,n,b)]) = h(T(a,n,b)) = Tr(a, h(n),b) = Tk (a, h([n]),d).

Thus, h is a Q-P quantale module, and A is the unique homomorphism satisfy
hom = h. Therefore (7, E) is the coequalizer of f and g. O

From now until the end of Section 3, we suppose (Q be a unital quantale with unit

e. Let X be a nonempty set, we consider the complete lattice (Q¥, \/X), where Q¥

is the set of all the function from X to Q and (\/* f;)(z) = \/ fi(x) for all z € X.
iel il

Theorem 3.8. Let X be a nonempty set, and @ is idempotent and unital
quantale with unit e, define Tx : Q x QX x Q — QX such that Tx(a, f,b)(x) =
a&f(x)&b, for all a,b € Q,f € QX, x € X. Then (Q¥,Tx) is the free double
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quantale module generated by X, equipped with the map ¢ : z € X — ¢, € Q¥,
0, y#u,
= .

e,y for all y € X.

where ¢, is defined by ¢, (y) =

Proof. 1t’s easy to prove that (QX,Tx) is a double quantale module. Let (M, Ths)
be any double quantale module and g : X — M be an arbitrary map. First ob-
serve that for all f € Q¥, @ be a unital quantale with unit e, hence f = Tx (e, f,¢)
by definition 2.2. So every elments of Q¥ could denote by Tx(c, f,d) for some
c,d € Q,f € QF. Define map h, : Q¥ — M such that hy(Tx(c, f,d)) =

\/ TM(C7 TM(f(m)vg(x)a f(ﬂ?)), d)a for all TX(C? f? d) € QX7 C, de Q
reX
Foralla’ € Z, (hgop)(2') = hg(par) = VX T (@ar (), g(x), par (7)) = Tha (e, (), €) =
zTE
f(z), hence hg o ¢ = f. This implies that the following diagram commute.

We will prove that h, is a Q-P quantale module homomorphism.
For all {fi}ier, a,b € Q, f € QX, we have

Dhy(\/ i) = hg(Tx (e, \/ fire)

iel el

= \/ TM(67TJ\/[(\/ fl)g(‘r)a\/fl)’e)
r€X = i€l

= \/ TM(\/ fi,g(x),\/fi)
rzeX i€l el

= \/ \/ T (fisg(2), fi)
el xeX

= \/hg(fi)§
el

(ii)hg(TX(ava b)) = \/ TM(G,TM(f(SE'),g(x)7f(l’)),b)

zeX

= TM(a, \/ TM(f(ﬂf),g(fE'), f(aj))a b)

reX

= T (a, he(f),0).

Therefore, hgy is a Q-P quantale module homomorphism.

Next, we will prove that h, is an unique Q-P quantale module homomorphism
satisfying the above conditions.

Now, let h; : QX — M be another unique Q-P quantale module homomor-
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phism such that h! o ¢ = g. For all Tx(c, f,d) € QX, we have
g

he(Tx (¢, f,d)) = \/ Tn(e, Tn(f(x),9(2), f(x)),d)

zeX
=\ Turle, T (f(2), (hy 0 9)(2), f(2)),d)
rzeX
= hy(\/ Tx(f(2), @u f(2))),d)
rzeX
= Tar(e, Wy (f), d) (V Tx(f(2), 90 f(2)) = f)

reX
= hlg(TX(Cv f7 d))

Therefore, (QX,Tx) is the free Q-P quantale module generated by X, equipped
with the map ¢. O

Definition 3.9. Let X be a nonempty set, Q, P is unital quantale , (Q~,Tx)
is called free Q-P quantale module generated by X.
Theorem 3.10. The forgetfull functor U : gModp — Set have a left adjoint.

Proof. Let X and Y be nonempty sets, (QX,Tx) and (QY,Ty) be the free Q-p
quantale module generated by X and Y respectively.
Corresponding map f : X — Y defines M(f) : Q¥ — QY such that

M(f)(9)(y) = V{g(z) | f(z) = y,x € X}, for all g in Q¥, y € Y. Obiviously,
M(f) is well defined.

We check M(f) is a Q-p quantale module homomorphism.

For all g;,g € Q¥,a € Q,b€ P,y € Y we have

)V g) =V gi(@) | f(z) =y,2 € X}

el i€l

=V i@ | f(@) =y,x € X})

i€l

=\ M(f)(9:)(y)

iel

Thus M (f) preserves arbitrary joins.

(II)M(f)(TX(a7g7 \/{TX agv ( ) | f( ) =Y, T € X}
:\/{a&g 2)&b | f(z) =y,z € X}
= a&(\/{g(x) | f(z) = y,x € X})&b

= a&e(M(f)(9)(y ))
=Ty (a, M(£)(9),b)(y)-

Thus M(f)(Tx(a,q,b))(y) = Ty (a, M(f)(9),b)(y). Tt is readily verified that
M(f) is a Q-P quantale module homomorphism.

Next, we will check that M : Set — gModp is a functor.
Let f: X — Y, ¢g:Y — Z, idx is the identity function on X. For all h € Q¥,
z e X, z€ Z, we have
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(i) M(idx)(h)(z) = \V{h(z) | idx(x) = v} = h(x) = idgx (h)(x), it shows that
M preserves identity function.

(ii) (M (g) o M(f))(h)(2) = \/AM(S)(W) () | 9(y) = 2,y € Y}
=\V{V{h@) | f@)=y,ze X} |gly) =2y eV}
=\ {h() | fz) =y, 9(y) =z2€ X, yeY}
=\{n@) | g(f(x)) = 2z,2 € X}
= M(go f)(h)(2),

then M preserves composition.
Finally, we will prove that M is the left adjoint of U.
By theorem 3.8, we have (QX,Tx) is the free Q-P quantale module generated
by X, equipped with the map ¢, therefore, M is the left adjoint of U.
O

Theorem 3.11. The forgetful functor U : gModp — Set preserves and
reflects regular epimorphisms.

Proof. 1t is easy to be verified that the forgetful functor U preserves regular epi-
morphisms. We will check the forgetful functor U reflects regular epimorphisms.

At first, every regular epimorphisms is a surjective homomorphism in gModp
by Theorem 3.7.

Next, we prove that every surjective homomorphism is a regular epimorphisms
in QMOdP.

Let h : My — M> be a surjective Q-P quantale module homomorphism. Since
the surjective morphism is an regular epimorphism in Set. Then h is a regular
epimorphism in Set, there exists a set X and maps f,g such that (h, Ms) is a
coequalizer of f and g.

Let (QX,Tx) be a Q-P quantale module generated by X. Since @ be a unital
quantale with unit e, hence s = T'x (e, s,¢) for all s € QX.

Define map hy, hy : Q% — M such that

hf(TX(a757b)) = \/ TM1 (0,, TIWl (s(x),f(a:),s(a:)),b)

reX

hg(TX(a"S’b)) = \/ T]VI1(G7TM1(8(x)’g(x)75($))ab)a
zeX

for all T (a,s,b) € QX, s € QX, a,b <€ Q.

We know that hy and hy are Q-P quantale module homomorphisms by theorem
3.8.

Since hy is a Q-P quantale module homomorphism, and h o f = h o g, then
hohy = hoh, Suppose there is a Q-P quantale module homomorphism A’ :
My — My with ' o hy = b/ o hy, then we have h' o f =R/ o g.

Because (h, M) is the coequalizer of f and g, there is a unique Q-P quantale
module homomorphism h : My — M3 such that A’ = hoh. Since h is a surjective of
Q-P quantale module homomorphism, then there exists z’,y’ € My and {x}};c; C
M such that h(z1) =z, h(y1) =y, h(z)) = ;.
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We check that h be a Q-P quantale module homomorphism in the following.

() AV xi) = h(V h(z})) = hh(V i) = W'(V =) = V h(z;) = V hh(z;) =

B i€l i€l i€l i€l i€l i€l
iel

(ii) For any a € Q,b € P, m € Ms, since h is a surjective of double quantale
module homomorphism, there exists m’ in M such that h(m’) = m.

So we have T3(a, h(m),b) = T3(a, h(h(m')),b) = T3(a, h'(m’),b) = h'(T1(a,m’, b))
— BA(T1(a,m',5)) = B(Ta(a, h(m'),b) = A(Ts(a,m, b)),

Hence, (h, M>) is an coequalizer of hy and hy in gModp, so h is a regular epi-
morphism in gModp. Therefore, the regular epimorphisms are precisely surjective
homomorphisms in gModp. Since the forgetfull functor U : gModp — Set
reflects surjective homomorphisms, hence U : gModp — Set reflects regular
epimorphisms.

_f b hy "
X M1 4>M3 QX Ml 4>M3
g hg
h - h ~
h h
M2 M2

O

The combination of theorem 3.7, theorem 3.10 and theorem 3.11, we can obtain
the main result of this paper.
Theorem 3.12. The category gModp is algebraic.
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