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Abstract: The Seemingly Unrelated Regressions (SUR) model proposed
in 1962 by Arnold Zellner has gained a wide acceptability and its practi-
cal use is enormous. In this research, two methods of estimation techniques
were examined in the presence of varying degrees of first order Autoregres-
sive [AR(1)] coefficients in the error terms of the model. Data was sim-
ulated using bootstrapping approach for sample sizes of 20, 50, 100, 500
and 1000. Performances of Ordinary Least Squares (OLS) and Generalized
Least Squares (GLS) estimators were examined under a definite form of the
variance-covariance matrix used for estimation in all the sample sizes consid-
ered. The results revealed that the GLS estimator was efficient both in small
and large sample sizes. Comparative performances of the estimators were
studied with 0.3 and 0.5 as assumed coefficients of AR(1) in the first and
second regressions and these coefficients were further interchanged for each
regression equation, it was deduced that standard errors of the parameters
decreased with increase in the coefficients of AR(1) for both estimators with
the SUR estimator performing better as sample size increased. Examining
the performances of the SUR estimator with varying degrees of AR(1) using
Mean Square Error (MSE), the SUR estimator performed better with au-
tocorrelation coefficient of 0.3 than that of 0.5 in both regression equations
with best MSE obtained to be 0.8185 using ρ = 0.3 in the second regression
equation for sample size of 50.
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1. INTRODUCTION

Seemingly Unrelated Regression (SUR) is a system of regression equations which
consists of a set of M regression equations, each of which contains different ex-
planatory variables and satisfies the assumptions of the Classical Linear Regression
Model (CLRM). The SUR estimation technique which allows for an efficient joint
estimation of all the regression parameters was first reported by Zellner [21] which
involves the application of Aitken’s Generalised Least Squares (AGLS) [2] to the
whole system of equations. Several scholars have also developed other estimators
for diverse SUR models to address different situations being examined. Dwivedi
and Srivastava [6], Zellner [21] cited in William [18] have shown that the estimation
procedure of SUR model was based on Generalized Least Squares (GLS) approach.
In answering how much efficiency is gained by using GLS instead of OLS, Zell-
ner [21] has shown in his two-stage approach the gain in efficiency of SUR model
over separate equation by equation, that efficiency would be attained when contem-
poraneous correlation between the disturbances is high and explanatory variables
in different equations are uncorrelated. Youssef [19,20] studied the properties of
seemingly unrelated regression equation estimators.

In an additional paper, he considered a general distribution function for the
coefficients of seemingly unrelated regression equations (SURE) model when we
unrestricted regression (SUUR) equations. Viraswami [17] presented a working
paper on some efficiency results on SURE model. In his work, he considered a
two equation seemingly unrelated regressions model in which the equations have
some common independent variables and obtained the asymptotic efficiency of the
OLS estimator of a parameter of interest relative to its FGLS estimator. He also
provided the small-sample relative efficiency of the ordinary least squares estimator
and the seemingly unrelated residuals estimator. Alaba et al. [3] recently examined
the efficiency gain of the GLS estimator over the Ordinary Least Squares (OLS)
estimator. This paper thus examines the performances of OLS and GLS estimators
when the disturbances are both autoregressively and contemporaneously correlated.

The remainder of the paper is organized as follows. In section 2, the parametric
SUR framework is presented while the simulation studies carried out in the work is
discussed in Section 3. Results and detailed discussions are presented in Section 4
while Section 5 gives some concluding remarks.

2. PARAMETRIC SUR FRAMEWORK

Suppose there are M equations

Yit = Xitβi + εit i = 1, 2, ...,M (1)

Here, i represents the number of equation and t = 1, ..., T is the observation
index. The number of observations is assumed to be large, so that in the analysis
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we take T →∞ whereas the number of equations M remains fixed. Each equation
i has a single response variable Yit and a K−dimensional vector of regression Xit.
The Seemingly Unrelated Regressions (SUR) model above is:

Yi = Xiβi + εi (2)

where Yi is a T × 1 vector of observation on the response variables;
Xi is a T ×Ki matrix of explanatory variables;
βi is a Ki × 1 vector of regression parameters; and
εi is a T × 1 vector of disturbances.
If we stack the above equations, we can further write (2) in a more compact and

matrix form as
y = Xβ + ε (3)

where y is an MT × 1 vector of response variables, X is an MT × k matrix of
explanatory variables, β is a k × 1 vector of parameters and ε is an MT × 1 vector
of disturbances. i.e,

y =


y1
y2
...
yM

 , X =


X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . XM

 , β =


β1
β2
...
βM

 , and ε =


ε1
ε2
...
εM

 .
and with E(ε/X1, X2, ..., XM ) = 0, E(εε′/X1, X2, ..., XM ) = Ω.

We assume that a total of T observations are used in estimating the parameters

of the M equations. Each equation involves Km regressors, for a total of K =
M∑
i=1

Ki

. We will require T > Ki. The data are assumed to be well behaved. We also assume
that disturbances are uncorrelated across observations. Therefore,

E[εitεjs|X1, X2, ..., XM ] = σij , if t = s and 0 otherwise.

The disturbance formulation is therefore,

E[εiε
′
j |X1, X2, ..., XM ] = σijIT

or

E[εε′|X1, X2, ..., XM ] = Ω =


σ11l σ12l . . . σ1M l
σ21l σ22l . . . σ2M l

...
...

. . .
...

σM1l σM2l . . . σMM l

 (4)

The specification of the covariance structure is simplified by arranging the data
by observation t, rather than by equation. The disturbance vector, εt = (ε1t, ε2t, ..., εMt)

′

is generated by a stationary, first-order autoregressive process.

ε =


ε1t
ε2t
...

εMt

 =


ρ1 0 . . . 0
0 ρ2 . . . 0
...

...
. . .

...
0 0 . . . ρM




ε1t−1
ε2t−1

...
εMt−1

+


v1t
v2t
...

vMt

 (5)
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or in matrix notation, εt = Rε(t−1) + v(t), where the v(t) are Independent and
Identically Distributed random variables (IID) with E(v(t)) = 0 and covariance
matrix

E(v(t)v
′
(t)) = Σ =


σ11 σ12 . . . σ1M
σ21 σ22 . . . σ2M

...
...

. . .
...

σM1 σM2 . . . σMM

 (6)

The diagonal structure of the R matrix implies that each equation or cross-
section unit exhibits its own serial correlation coefficient, and the innovations v(t)
are contemporaneously correlated with covariance matrix Σ.

The most general model that is usually considered involves the diagonal R ma-
trix, with M parameters, specifying the serial correlation together with a full, sym-
metric Σ matrix, with M(M + 1)/2 parameters, specifying the contemporaneous
covariance. This implies that in (4), Ω = Σ⊗ I, and Ω−1 = Σ−1 ⊗ l.

If Ω is known and denoting the ijth element of Σ−1 by σij , the generalized least
squares estimator for the coefficients in this model is:

β̂ =
(
X ′Ω−1X

)−1
X ′Ω−1y (7)

i.e.,

β̂ =
[
X ′(Σ−1 ⊗ l)X

]−1
X ′(Σ−1 ⊗ l)y

Expanding the Kronecker products gives

β̂ =


σ11X ′1X1 σ12X ′1X2 . . . σ1MX ′1XM

σ21X ′2X1 σ22X ′2X2 . . . σ2MX ′2XM

...
...

. . .
...

σM1X ′MX1 σM2X ′MX2 . . . σMMX ′MXM


−1



M∑
1
jσ1jX ′1yj

M∑
1
jσ2jX ′2yj

...
M∑
1
jσMjX ′Myj


(8)

This is the asymptotic covariance matrix for the GLS estimator. Assume that
Xi = Xj = X, so that X ′iXj = X ′X ∀i, j, in (8), the inverse matrix becomes(
Σ−1 ⊗X ′X

)−1
=
[
Σ⊗ (X ′X)−1

]
and each term X ′yj = X ′Xbj . if we then move

the common term X ′X out of the summations, we obtain

β̂ =


σ11(X ′X)−1 σ12(X ′X)−1 . . . σ1M (X ′X)−1

σ21(X′X)−1 σ22(X ′X)−1 . . . σ2M (X ′X)−1

...
...

. . .
...

σM1(X ′X)−1 σM2(X ′X)−1 . . . σMM (X ′X)−1


−1



(X ′X)
M∑
1
jσ1lbl

(X ′X)
M∑
1
jσ2lbl

...

(X ′X)
M∑
1
jσMlbl


(9)
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3. SIMULATION STUDY

This study considers two-equation SUR model with autoregressively and contem-
poraneously correlated error terms.

y1 = 0.5 + 0.7xi1 + ei1

y2 = 0.6 + 0.8xi2 + ei2

Using the true value of the variance covariance as

Σ =

[
1 0.6

0.6 1

]
(10)

Thus, the new Cholesky decomposition is computed as:

K =

[
1 0

0.6 0.8

]
ε∗ = [ε∗1 ε∗2], the new correlated errors whose elements are determined by the

product

ε∗ = P ∗ε =

[
ε1 0

0.6ε1 0.8ε2

]
.

The explanatory variables are generated from uniform distribution for the var-
ious sample sizes of 20, 50, 100, 500 and 1000. Then, ε = (ε1, ε2)′ are series of
random normal deviates of required lengths of 20, 50, 100, 500 and 1000 that were
generated, these series were then standardized and appropriately transformed using
(10).

4. RESULTS AND DISCUSSIONS

4.1. Results

The summary of the results when the model is estimated by interchanging the
coefficients of autocorrelated errors are presented below.

4.2. Discussion of Results

Table 1 gives the comparative performance of the estimators with the coefficient
of AR(1) for the first regression equation to be 0.3 (i.e., ρ1 = 0.3) and that of the
second regression equation to be 0.5 (i.e., ρ2 = 0.5).

Table 2 gives the comparative performance of the estimators with the coefficient
of AR(1) for the first regression equation to be 0.5 (i.e., ρ1 = 0.5) and that of the
second regression equation to be 0.3 (i.e., ρ2 = 0.3).

From Table 1 and 2, we found that the standard errors of the parameter estimates
decreased as sample size increased with varying degrees of coefficients of AR(1)
with the SUR estimator performing better than the OLS estimator in both cases
(that is, the standard errors of the parameter estimates obtained using the SUR
estimator were consistently lower than that of the OLS estimator in both cases as
the sample size increased). Significantly, we found that higher coefficient of first
order autoregressive scheme accounts for better efficiencies of the estimators.
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From Table 3, we found on the basis of the Mean Square Error (MSE) for the
SUR estimator that the MSE of the regression equations increased with increase in
the coefficients of AR(1) with the second model for sample size of 50 performing best
with coefficients of AR(1) [0.3, 0.5] and MSE [0.8185, 0.8852] respectively. Thus, the
best MSE obtained for the SUR estimator is 0.8185 using ρ = 0.3 for the second
regression for sample size of 50.

Table 1
Comparative Study of the Estimators Across Different Sample Sizes
with ρ1 = 0.3 and ρ2 = 0.5

N = 20 N = 50 AR(1)
Regressions OLS SUR OLS SUR

Estimate SE Estimate SE Estimate SE Estimate SE

y1 0.3
β10 = 0.5 0.9334 0.3862 0.7496 0.3661 0.4436 0.2292 0.4823 0.2217
β11 = 0.7 -0.6360 0.7912 -0.1761 0.7286 0.6221 0.4874 0.5193 0.4622
y2 0.5
β20 = 0.6 0.1710 0.4354 0.3473 0.4238 0.1339 0.1660 0.1289 0.1630
β21 = 0.8 0.8003 1.0003 1.1115 0.9212 1.3440 0.3772 1.3630 0.3577

N = 100 N = 500 AR(1)
Regressions OLS SUR OLS SUR

Estimate SE Estimate SE Estimate SE Estimate SE

y1 0.3
β10 = 0.5 0.1741 0.1643 0.0899 0.1509 0.3389 0.0769 0.3979 0.0671
β11 = 0.7 1.1386 0.3596 1.3699 0.3124 0.6675 0.1689 0.4974 0.1299
y2 0.5
β20 = 0.6 0.2805 0.1435 0.2833 0.1370 0.3543 0.0651 0.3676 0.0602
β21 = 0.8 0.8714 0.3479 0.8602 0.3022 0.7246 0.1569 0.6710 0.1207

N = 1000 AR(1)
Regressions OLS SUR

Estimate SE Estimate SE

y1 0.3
β10 = 0.5 0.3191 0.0524 0.3088 0.0460
β11 = 0.7 0.7389 0.1140 0.7683 0.0887
y2 0.5
β20 = 0.6 0.3021 0.0452 0.3013 0.0418
β21 = 0.8 0.8360 0.1084 0.8393 0.0843

5. CONCLUSION

The results obtained showed that the standard errors of the SUR estimator is con-
sistently lower than that of the OLS estimator when the model is estimated with
varied coefficients of AR(1). It is revealed that higher coefficient of AR(1) accounts
for better efficiencies of the estimators.
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Table 2
Comparative Study of the Estimators Across Different Sample Sizes
with ρ1 = 0.5 and ρ2 = 0.3

N = 20 N = 50 AR(1)
Regressions OLS SUR OLS SUR

Estimate SE Estimate SE Estimate SE Estimate SE

y1 0.5
β10 = 0.5 0.6426 0.3359 0.4562 0.3169 0.3268 0.1974 0.3450 0.1933
β11 = 0.7 -0.5000 0.8027 0.1311 0.7086 0.5674 0.4850 0.5008 0.4620
y2 0.3
β20 = 0.6 0.3084 0.4836 0.5562 0.4532 0.1998 0.1915 0.1914 0.1865
β21 = 0.8 1.5841 1.0033 0.8920 0.8857 1.3123 0.3931 1.3354 0.3745

N = 100 N = 500 AR(1)
Regressions OLS SUR OLS SUR

Estimate SE Estimate SE Estimate SE Estimate SE

y1 0.5
β10 = 0.5 0.1039 0.1424 0.0369 0.1343 0.2371 0.0680 0.2767 0.0624
β11 = 0.7 1.1985 0.3612 1.4546 0.3127 0.6922 0.1697 0.5325 0.1301
y2 0.3
β20 = 0.6 0.3997 0.1611 0.4148 0.1495 0.4815 0.0726 0.5070 0.0638
β21 = 0.8 0.8659 0.3481 0.8222 0.3012 0.7630 0.1558 0.6892 0.1195

N = 1000 AR(1)
Regressions OLS SUR

Estimate SE Estimate SE

y1 0.5
β10 = 0.5 0.2257 0.0462 0.2112 0.0424
β11 = 0.7 0.7471 0.1142 0.8052 0.0880
y2 0.3
β20 = 0.6 0.4224 0.0508 0.4116 0.0447
β21 = 0.8 0.8374 0.1087 0.8683 0.0838

Table 3
Comparative Performance of the SUR Estimator with Varying Degrees
of Coefficients of AR(1) Using MSE

N = 20 N = 50 N = 100
Regressions ρ = 0.3 ρ = 0.5 ρ = 0.3 ρ = 0.5 ρ = 0.3 ρ = 0.5

y1 1.0023 1.1721 0.9425 1.0756 0.9883 1.1399
y2 2.1512 2.5458 0.8185 0.8852 1.1522 1.3157

N = 500 N = 1000
Regressions ρ = 0.3 ρ = 0.5 ρ = 0.3 ρ = 0.5

y1 1.2392 1.4294 1.1542 1.3181
y2 1.1796 1.3638 1.1428 1.3095
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