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1. INTRODUCTION

Let X be a non-empty set, then a family of sets I ⊂ 2X (the class of all subsets of
X) is called an ideal if and only if for each A,B ∈ I, we have A ∪ B ∈ I and for
each A ∈ I and each B ⊂ A, we have B ∈ I. A non-empty family of sets F ⊂ 2X

is a filter on X if and only if ∅ /∈ F , for each A,B ∈ F , we have A ∩ B ∈ F and
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each A ∈ F and each A ⊂ B, we have B ∈ F . An ideal I is called non-trivial
ideal if I 6= ∅ and X /∈ I. Clearly I ⊂ 2X is a non-trivial ideal if and only if
F = F (I) = {X/A : A ∈ I} is a filter on X. A non-trivial ideal I ⊂ 2X is called
admissible if and only if {{x} .x ∈ X} ⊂ I. Further details on ideals of 2X can be
found in Kostyrko, et al. [1]. The notion was further investigated by Salat, et al. [2]
and others.

By the convergence of a double sequence we mean the convergence on the Pring-
sheim sense that is, a double sequence x = (xk,l) has Pringsheim limit L (denoted by
P − limx = L) provided that given ε > 0 there exists n ∈ N such that |xk,l − L| < ε
whenever k, l > n [3]. We shall write more briefly as “P−convergent”.

The double sequence x = (xk,l) is bounded if there exists a positive number M
such that |xk,l| < M for all k and l. Let l2∞ the space of all bounded double such
that

‖xk,l‖(∞,2) = sup
k,l
|xk,l| <∞.

The double sequence θr,s = {(kr, ls)} is called double lacunary sequence [4] if
there exist two increasing of integers such that

ko = 0, hr = kr − kr−1 →∞ as r →∞

and lo = 0,
−
hs = ls − ls−1 →∞ as s→∞.

Notations: kr,s = krls, hr,s = hr
−
hs, θr,s is determined by

Ir,s ={(k, l) :kr−1<k≤kr and ls−1<l≤ ls} ,

qr=
kr

kr−1
,
−
qs=

ls

ls−1
and qr,s=qr

−
qs.

Recall in [5] that an Orlicz function M is continuous, convex, nondecreasing
function define for x > 0 such that M(0) = 0 and M(x) > 0. If convexity of
Orlicz function is replaced by M(x + y) ≤ M (x) + M (y) then this function is
called the modulus function and characterized by Ruckle [6]. An Orlicz function
M is said to satisfy ∆2−condition for all values u, if there exists K > 0 such that
M(2u) ≤ KM(u), u ≥ 0.

Lemma 1. Let M be an Orlicz function which satisfies ∆2−condition and let 0 <
δ < 1. Then for each t ≥ δ, we have M(t) < Ktδ−1M (2) for some constant K > 0.

A double sequence space X is said to be solid or normal if (αk,lxk,l) ∈ X, and
for all double sequences α = (αk,l) of scalars with |αk,l| ≤ 1 for all k, l ∈ N.

Let n ∈ N and X be a real vector space of dimension d, where n ≤ d. A
real-valued function ‖., ..., .‖ on X satisfying the following four conditions:

(i) ‖x1, x2, ..., xn‖ = 0 if and only if x1, x2, ..., xn are linearly dependent,
(ii) ‖x1, x2, ..., xn‖ is invariant under permutation,
(iii) ‖αx1, x2, ..., xn‖ = |α| ‖x1, x2, ..., xn‖ , α ∈ R,
(iv) ‖x1 + xı1, x2, ..., xn‖ ≤ ‖x1, x2, ..., xn‖+‖xı1, x2, ..., xn‖ is called an n−norm

on X, and the pair (X, ‖., ..., .‖) is called an n−normed space [7,8]. Normed space
was studied by Mursaleen and Mohiuddine [9,10], Mohiuddine and Lohani [11],
Mohiuddine and Alghamdi [12] and many others from different aspects.
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A trivial example of n−normed space is X = R equipped with the following
Euclidean n−norm:

‖x1, x2, ..., xn‖E = abs

∣∣∣∣∣∣
x11...x1n

...
xn1...xnn

∣∣∣∣∣∣


where xi = (xi1, ..., xin) ∈ Rn for each i = 1, 2, . . . , n.

2. MAIN RESULTS

Let I2 be an ideal of 2N×N, θr,s be a double lacunary sequence, M be an Orlicz
function, p = (pk,l) be a bounded double sequence of strictly positive real numbers
and (X, ‖., ..., .‖) be an n−normed space. Further w (n−X) denotes X−valued
sequence space. Now, we define the following double generalized difference sequence
spaces:

wI2θr,s [M,∆m, p, ‖., ..., .‖]o =
{
x = (xk,l) ∈ w (n−X) : ∀ε > 0,(r, s) ∈ Ir,s :

1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∥∆mxk,l

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥
)]pk,l

≥ ε

 ∈ I2
for some ρ > 0 and for every z1, z2, ..., zn−1 ∈ X

}
,

wI2θr,s [M,∆m, p, ‖., ..., .‖] =
{
x = (xk,l) ∈ w (n−X) : ∀ε > 0,(r, s) ∈ Ir,s :

1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∥∆mxk,l − L
ρ

, z1, z2, ..., zn−1

∥∥∥∥∥
)]pk,l

≥ ε

 ∈ I2
for some ρ > 0, L ∈ X and for every z1, z2, ..., zn−1 ∈ X

}
,

wI2θr,s [M,∆m, p, ‖., ..., .‖]∞ =
{
x = (xk,l) ∈ w (n−X) : ∃K > 0,(r, s) ∈ Ir,s :

1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∥∆mxk,l

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥
)]pk,l

≥ K

 ∈ I2
for some ρ > 0 and for every z1, z2, ..., zn−1 ∈ X

}
,

and

wθr,s [M,∆m, p, ‖., ..., .‖]∞ =
{
x = (xk,l) ∈ w (n−X) : ∃K > 0,

1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∥∆mxk,l

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥
)]pk,l

≤ K

for some ρ > 0 and for every z1, z2, ..., zn−1 ∈ X
}

,
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where ∆mx = (∆mxk,l) =
(
∆m−1xk,l −∆m−1xk,l+1 −∆m−1xk+1,l + ∆m−1xk+1,l+1

)
,(

∆1xk,l
)

= (∆xk,l) = (xk,l − xk,l+1 − xk+1,l + xk+1,l+1), ∆0x = (xk,l) and also this
generalized difference double notion has the following binomial representation:

∆mxk,l =

m∑
i=0

m∑
j=0

(−1)
i+j

(
m

i

)(
m

j

)
xk+i,l+j .

If m = 0 and θr,s = {(2r, 2s)} , we obtain

wI2θr,s [M,∆m, p, ‖., ..., .‖]o = wI2 [M,p, ‖., ..., .‖]o ,

wI2θr,s [M,∆m, p, ‖., ..., .‖] = wI2 [M,p, ‖., ..., .‖] ,

wI2θr,s [M,∆m, p, ‖., ..., .‖]∞ = wI2 [M,p, ‖., ..., .‖]∞
and wθr,s [M,∆m, p, ‖., ..., .‖]∞ = w [M,p, ‖., ..., .‖]∞

which were defined and studied by Esi [13].
The following well-known inequality will be used in this study:
If 0 ≤ infk,l pk,l = Ho ≤ pk,l ≤ supk,l = H <∞, D = max

(
1, 2H−1

)
, then

|xk,l + yk,l|pk,l ≤ D {|xk,l|pk,l + |yk,l|pk,l}

for all k, l ∈ N and xk,l, yk,l ∈ C. Also |xk,l|pk,l ≤ max
(

1, |xk,l|H
)

for all xk,l ∈ C.

Theorem 1. The sets wI2θr,s [M,∆m, p, ‖, ., ‖]o, w
I2
θr,s

[M,∆m, p, ‖, ., ‖]
and wI2θr,s [M,∆m, p, ‖, ., ‖]∞ are linear spaces over the complex field C.

Proof. We will prove only for wI2θr,s [M,∆m, p, ‖, ., ‖]o and the others can be proved

similarly. Let x, y ∈ wI2θr,s [M,∆m, p, ‖, ., ‖]o and α, β ∈ C. Then(r, s) ∈ Ir,s:
1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆mxk,l
ρ1

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

≥ ε
2

 ∈ I2,
for some ρ1 > 0

and (r, s) ∈ Ir,s:
1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆myk,l
ρ2

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

≥ ε
2

 ∈ I2,
for some ρ2 > 0.

Since ‖., ..., .‖ is a n−norm and M is an Orlicz function, the following inequality
holds:

1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆m (αxk,l + βyk,l)

|α| ρ1 + |β| ρ2
, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

≤ D

hr,s

∑
(k,l)∈Ir,s

[
|α|

|α| ρ1 + |β| ρ2
M

(∥∥∥∥∆mxk,l
ρ1

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l
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+
D

hr,s

∑
(k,l)∈Ir,s

[
|β|

|α| ρ1 + |β| ρ2
M

(∥∥∥∥∆myk,l
ρ2

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

≤ D

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆mxk,l
ρ1

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

+
D

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆myk,l
ρ2

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

From the above inequality, we get(r, s) ∈ Ir,s :
1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆m (αxk,l + βyk,l)

|α| ρ1 + |β| ρ2
, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

≥ ε


⊂

(r, s) ∈ Ir,s :
D

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆mxk,l
ρ1

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

≥ ε

2


∪

(r, s) ∈ Ir,s :
D

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆myk,l
ρ2

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

≥ ε

2

 .

Two sets on the right hand side belong to I2 and this completes the proof.
It is also easy verify that the space wθr,s [M,∆m, p, ‖., ..., .‖]∞ is also a linear

space.

Theorem 2. For fixed (n,m) ∈ N × N, wθr,s [M,p, ‖., ..., .‖]∞ paranormed space
with respect to the paranorm defined by

h(n,m)(x)=

m,m∑
k,l=1,1

‖xk,l, z1, z2, ..., zn−1‖

+ infρ
pn,m

H > 0:

sup
r,s

1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆mxk,l
ρ

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

 1
H

≤1,

for some ρ > 0 and for every z1, z2, ..., zn−1 ∈ X.

Proof. h(n,m) (θ) = 0 and h(n,m) (−x) = h(n,m) (x) are easy to prove, so we omit
them. Let us take x, y ∈ wθr,s [M,∆m, p, ‖., ..., .‖]∞. Let

A (x) = {ρ > 0 : sup
r,s

1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆mxk,l
ρ

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

≤ 1,

∀z1, z2, ..., zn−1 ∈ X}

and

A (y) = {ρ > 0 : sup
r,s

1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆myk,l
ρ

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

≤ 1,

∀z1, z2, ..., zn−1 ∈ X} .
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Let ρ1 ∈ A (x) and ρ2 ∈ A (y). If ρ = ρ1 + ρ2, then we have

sup
r,s

1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆m (xk,l + yk,l)

ρ
, z1, z2, ..., zn−1

∥∥∥∥)]

≤ ρ1
ρ1 + ρ2

sup
r,s

1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆mxk,l
ρ1

, z1, z2, ..., zn−1

∥∥∥∥)]

+
ρ2

ρ1 + ρ2
sup
r,s

1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆myk,l
ρ1

, z1, z2, ..., zn−1

∥∥∥∥)] .

Thus

sup
r,s

1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆m (xk,l + yk,l)

ρ1 + ρ2
, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

≤ 1

and

h(n,m) (x+ y) =

m,m∑
k,l=1,1

‖xk,l + yk,l, z1, z2, ..., zn−1‖

+ inf
{

(ρ1 + ρ2)
pn,m

H : ρ1 ∈ A (x) and ρ2 ∈ A (y)
}

≤
m,m∑
k,l=1,1

‖xk,l, z1, z2, ..., zn−1‖+ inf
{

(ρ1)
pn,m

H : ρ1 ∈ A (x)
}

+

m,m∑
k,l=1,1

‖yk,l, z1, z2, ..., zn−1‖+ inf
{

(ρ2)
pn,m

H : ρ2 ∈ A (y)
}

= h(n,m) (x) + h(n,m) (y) .

Now, let λuk,l → λ, where λuk,l, λ ∈ C and h(n,m)

(
xuk,l − xk,l

)
→ 0 as u → ∞.

We have to show that h(n,m)

(
λuk,lx

u
k,l − λxk,l

)
→ 0 as u→∞. Let λk,l → α, where

λk,l, λ ∈ C and h(n,m)

(
xuk,l − xk,l

)
→ 0 as u→∞. Let

A (xu) ={ρu > 0 : sup
r,s

1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆mxuk,l
ρu

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

≤ 1,

∀z1, z2, ..., zn−1 ∈ X
}

.

and

A (xu − x)

={ρıu > 0 : sup
r,s

1

hr,s

∑
(k,l)∈Ir,s

M
∥∥∥∥∥∥

∆m
(
xuk,l − xk,l

)
ρıu

, z1, z2, ..., zn−1

∥∥∥∥∥∥
pk,l

≤1,

∀z1, z2, ..., zn−1 ∈ X} .
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If ρu ∈ A (xu) and ρıu ∈ A (xu − x) then we observe that

M

∥∥∥∥∥∥
∆m

(
λuk,lx

u
k,l − λxk,l

)
ρu

∣∣∣λuk,l − λ∣∣∣+ ρıu |λ|
, z1, z2, ..., zn−1

∥∥∥∥∥∥


≤M

∥∥∥∥∥∥
∆m

(
λuk,lx

u
k,l − λxuk,l

)
ρu

∣∣∣λuk,l − λ∣∣∣+ρıu |λ| , z1, z2, ..., zn−1
∥∥∥∥∥∥+

∥∥∥∥∥∥
∆m

(
λxuk,l − λxk,l

)
ρu

∣∣∣λuk,l − λ∣∣∣+ρıu |λ| , z1, z2, ..., zn−1
∥∥∥∥∥∥


≤
ρu

∣∣∣λuk,l − λ∣∣∣
ρu

∣∣∣λuk,l − λ∣∣∣+ ρıu |λ|
M

(∥∥∥∥∆mxuk,l
ρu

, z1, z2, ..., zn−1

∥∥∥∥)

+
ρıu |λ|

ρu

∣∣∣λuk,l − λ∣∣∣+ ρıu |λ|
M

∥∥∥∥∥∥
∆m

(
xuk,l − xk,l

)
ρıu

, z1, z2, ..., zn−1

∥∥∥∥∥∥
 .

From this inequality, it follows thatM
∥∥∥∥∥∥

∆m
(
λuk,lx

u
k,l − λxk,l

)
ρu

∣∣∣λuk,l − λ∣∣∣+ ρıu |λ|
, z1, z2, ..., zn−1

∥∥∥∥∥∥
pk,l

≤ 1

and consequently

h(n,m)

(
λuk,lx

u
k,l − λxk,l

)
=

m,m∑
k,l=1,1

∥∥λuk,lxk,l − λxk,l, z1, z2, ..., zn−1∥∥
+ inf

{(
ρu
∣∣λuk,l − λ∣∣+ ρıu |λ|

) pn,m
H : ρu ∈ A (xu) and ρıu ∈ A (xu − x)

}
≤
∣∣λuk,l − λ∣∣ m,m∑

k,l=1,1

∥∥xuk,l, z1, z2, ..., zn−1∥∥
+ |λ|

m,m∑
k,l=1,1

∥∥xuk,l − xk,l, z1, z2, ..., zn−1∥∥
+
(∣∣λuk,l − λ∣∣) pn,m

H inf
{

(ρu)
pn,m

H : ρu ∈ A (xu)
}

+ (|λ|)
pn,m

H inf
{

(ρıu)
pn,m

H : ρıu ∈ A (xu − x)
}

≤max
{∣∣λuk,l − λ∣∣ , (∣∣λuk,l − λ∣∣) pn,m

H

}
h(n,m)

(
xuk,l
)

+ max
{
|λ| , (|λ|)

pn,m
H

}
h(n,m)

(
xuk,l − xk,l

)
.

Hence by our assumption the right hand side tends to zero as u → ∞. This
completes the proof.

Corollary 1. It can be noted that h = infn,m∈N h(n,m) also gives a paranorm on
the above sequence spaces. However if one consider the sequence space

wθr,s[M,∆m,p,‖.,...,.‖]∞
7
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which is larger space than the space wI2θr,s [M,∆m, p, ‖., . . . , .‖]∞ the construction of
the paranorm is not clear and we leave it as an open problem. However it should be
noted that for a fixed F ∈ I2, the space

wFθr,s [M,∆m, p, ‖., ..., .‖]∞
=
{
x = (xk,l) ∈ w(n−X) : ∃K > 0,

{
(n,m) ∈ N× N :

sup
(r,s)∈N×N/F

1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆mxk,l
ρ

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

≥ K

 ∈ I2,
for some ρ > 0 and for every z1, z2, ..., zn−1 ∈ X

}
which is subspace of the space wI2θr,s [M,∆m, p, ‖., ..., .‖]∞ is a paranormed space with

the paranorms h(n,m) for (n,m) /∈ F and hF = inf(n,m)∈N×N/F h(n,m).

Theorem 3. Let M,M1 and M2 be Orlicz functions. Then we have
(i) wI2θr,s [M1,∆

m, p, ‖., ..., .‖]o ⊂ w
I2
θr,s

[MoM1,∆
m, p, ‖., ..., .‖]o provided that p =

(pk,l) is such that Ho > 0.

(ii) wI2θr,s [M1,∆
m, p, ‖., ..., .‖]o ∩ w

I2
θr,s

[M2,∆
m, p, ‖., ..., .‖]o

⊂ wI2θr,s [M1 +M2,∆
m, p, ‖., ..., .‖]o .

Proof. (i). For given ε > 0, we first choose εo > 0 such that max
{
εHo , ε

Ho
o

}
< ε.

Now using the continuity of M , choose 0 < δ < 1 such that 0 < t < δ implies
M (t) < εo. Let x ∈ wI2θr,s [M1,∆

m, p, ‖., ..., .‖]o. Now from the definition of the

space wI2 [M1,∆
m, p, ‖., ..., .‖]o, for some ρ > 0

A (δ) =

(r, s) ∈ Ir,s :
1

hr,s

∑
(k,l)∈Ir,s

[
M1

(∥∥∥∥∆mxk,l
ρ

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

≥ δH
 ∈ I2.

Thus if (n,m) /∈ A (δ) then

1

hr,s

∑
(k,l)∈Ir,s

[
M1

(∥∥∥∥∆mxk,l
ρ

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

< δH

⇒
∑

(k,l)∈Ir,s

[
M1

(∥∥∥∥∆mxk,l
ρ

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

< hr,sδ
H ,

⇒
[
M1

(∥∥∥∥∆mxk,l
ρ

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

< δH for all (k, l) ∈ Ir,s,

⇒M1

(∥∥∥∥∆mxk,l
ρ

, z1, z2, ..., zn−1

∥∥∥∥) < δ for all (k, l) ∈ Ir,s.

Hence from above inequality and using continuity of M , we must have

M

(
M1

(∥∥∥∥∆mxk,l
ρ

, z1, z2, ..., zn−1

∥∥∥∥)) < εo for all (k, l) ∈ Ir,s

which consequently implies that∑
(k,l)∈Ir,s

[
M

(
M1

(∥∥∥∥∥∆mxk,l

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥
))]pk,l

< hr,s max
{
εHo , ε

Ho
o

}
< hr,sε,

8
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⇒
1

hr,s

∑
(k,l)∈Ir,s

[
M

(
M1

(∥∥∥∥∥∆mxk,l

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥
))]pk,l

< ε.

This shows that

{(r, s) ∈ Ir,s :
1

hr,s

∑
(k,l)∈Ir,s

[
M

(
M1

(∥∥∥∥∆mxk,l
ρ

, z1, z2, ..., zn−1

∥∥∥∥))]pk,l

≥ ε} ⊂ A (δ)

and so belongs to I2. This completes the proof.
(ii) Let x ∈ wI2θr,s [M1,∆

m, p, ‖., ..., .‖]o ∩ w
I2
θr,s

[M2,∆
m, p, ‖., ..., .‖]o. Then the

fact that

1

hr,s

[
(M1 +M2)

(∥∥∥∥∥∆mxk,l

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥
)]pk,l

≤
D

hr,s

[
M1

(∥∥∥∥∥∆mxk,l

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥
)]pk,l

+
D

hr,s

[
M2

(∥∥∥∥∥∆mxk,l

ρ
, z1, z2, ..., zn−1

∥∥∥∥∥
)]pk,l

gives us the result.

Theorem 4. (i) If 0 <Ho≤ pk,l < 1, then

wI2θr,s [M,∆m, p, ‖.,...,.‖]o⊂w
I2
θr,s

[M,∆m, ‖.,...,.‖]o

.
(ii) If 1 ≤ pk,l ≤ H <∞, then

wI2θr,s [M,∆m, ‖., ..., .‖]o ⊂ w
I2
θr,s

[M,∆m, p, ‖., ..., .‖]o

.

(iii) If 0 < pk,l < qk,l <∞ and
qk,l

pk,l
is bounded, then

wI2θr,s [M,∆m, p, ‖., ..., .‖]o ⊂ w
I2
θr,s

[M,∆m, q, ‖., ..., .‖]o

.

Proof. The proof is standard, so we omit it.

Theorem 5. The sequence spaces wI2θr,s [M,∆m, p, ‖., ..., .‖]o, w
I2
θr,s

[M,∆m, p, ‖., ..., .‖],
wI2θr,s [M,∆m, p, ‖., ..., .‖]∞ and wθr,s [M,∆m, p, ‖., ..., .‖]∞ are solid.

Proof. We give the proof for only wI2θr,s [M,∆m, p, ‖., ..., .‖]o. The others can be

proved similarly. Let x ∈ wI2θr,s [M1,∆
m, p, ‖., ..., .‖]o and α = (αk,l) be a double

sequence of scalars such that |αk,l| ≤ 1 for all k, l ∈ N. Then we have(r, s) ∈ Ir,s :
1

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆m (αk,lxk,l)

ρ
, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

≤ ε


9
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⊂

(r, s) ∈ Ir,s :
T

hr,s

∑
(k,l)∈Ir,s

[
M

(∥∥∥∥∆mxk,l
ρ

, z1, z2, ..., zn−1

∥∥∥∥)]pk,l

≤ ε

 ∈ I2,

where T = maxk,l

{
1, |αk,l|H

}
.

Hence αx ∈ wI2θr,s [M1,∆
m, p, ‖., ..., .‖]o for all double sequences α = (αk,l) with

|αk,l| ≤ 1 for all k, l ∈ N whenever x ∈ wI2θr,s [M1,∆
m, p, ‖., ..., .‖]o.
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