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Abstract: In this paper,we consider certain nonlinear partial difference
equations

(aAm+1,n + bAm,n+1 + CAm,n)k - (dAm,n)k + Zpi(m7 n)Afn—a“n—-ri =0

i=1

where a,b,¢,d € (0,00), d > ¢, k = q/p, p, q are positive odd integers, u
is a positive integer, p;(m,n), (i = 0,1,2,---u) are positive real sequences.
0,7 € No = {1,2,---},i = 1,2,--+ ,u. A new comparison theorem for
oscillation of the above equation is obtained.
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1. INTRODUCTION

In this paper we consider nonlinear partial difference equation

(@Ami1n + bAmnit + CAmn)’ = ([dAm )"+ pi(m,n) AL =0, (1.1)

m—o;,N—T;
i=1
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where a,b,c,d € (0,00), d > ¢, k = ¢/p, p, q are positive odd integers, u is a
positive integer, p;(m,n), (i = 0,1,2,---u) are positive real sequences. o;,7; €
No = {1,2,---},4 = 1,2,--- ;u. The purpose of this paper is to obtain a new
comparison theorem for oscillation of all solutions of (1.1).

2. MAIN RESULTS

To prove our main result we need several preparatory results.
Lemma 2.1 Assume that {A,,,} is a positive solution of (1.1). Then

i: Am+1,n S elAm,na Am,n+1 S 92Am,na (21)
and
ii: Am*fh‘,’ﬂ*"’z‘ Z ei‘()ial‘e;OiTiAm*Uo,n*Tm (2'2)
c d—c
where 6, = 00 = ,00 = min {az}, To = mln {7’2}

b 1<i< 1<i<

Proof. Assume that {4, »} is eventually positive solutions of (1.1). From (1.1), we
have

(aAerl,n + bAm,nJrl + CAm,n)k - (dAmyn)k = - Zpl(mv n)Aﬁfai,nf'r,; < Oa

and so
(aAerl,n + bAm,nJrl + CAm,n)k S (dAm,n)k

Since k = ]j,p, q are positive odd integers, then
q

aAerl,n + bAm,nJrl < (d - C)Am,n'

Hence Apyyi1,n < 0140 5 and Ay, py1 < 024, . From the above inequality, we
can find Am,n < efoAm—oo,n < ei”Am—oi,na Am—ao,n < G‘QFOAm—ao,n—Tgy and

TO Ti
Am—oi,n S 92 Am—oi,n—ro S 021Am—ai,n—n-

Hence
g0 ANTO g;NTi
Am,n < 91 92 Am—o’g,n—To < 91192114171—01,71—7'1'-

The proof of Lemma 2.1 is completed. O
Lemma 2.2 [1] If z,y € RT and x # y, then
re" N —y)>a" —y" >ry" Nz —y), for r>1.

Theorem 2.1 If the difference inequality

000 kalgﬂ) kT;

kdk‘ 1 k-1 Pi (m7n)Am—Oo,n—To S 0 (23)

aAm+1,n+bAm,n+1* - m 71+Z

has no eventually positive solutions, then every solution of Equation (1.1) oscillates.
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Proof. Assume that {A,, ,} a is positive solution of Equation (1.1). Then, by (1.1)
and Lemma 2.2, we obtain

Ak

aAm-i—l n + bAm n+1 — ( m n + sz m,n k;’l Z:X:]%Z S 0 (24)

Substituting (2.2) into (2.4), we have

u 90'0*]"‘71' 97'0*]@'7'1'
aAerl,n + bAmerl - (d - C)Am,n + Z L kdkfl

i=1

pi (m7 n)Amfo'omf‘ro <0.

This contradiction completes the proof. O

Define a set E by
E={A>0/d—-c—AQumn >0, eventually}

u gao—koiego—kn

where Q, n, = Z; Wpi(m, n).

Theorem 2.2 Assume that

(i) hmm,n%oo sup Qm,n > 0;
(ii) there exists M > mg, N > ng such that if o9 > 79 > 0,

0'0 70 TO

b
H H — = AQm—i—jn— Z)]GO < (9 )TOGIO_UOﬂ (2.5)

)\EE]V[>mN>n j=1 i=1 2

and if 79 > og > 0,
7'0 go 0o b

sup H H —c—AQm_ in—i— j)]fo o0 <(02 a

AEEM>m,N>n 555 i

Y7000 (2.6)

Then every solution of (1.1) oscillates.

Proof. Suppose, to the contrary, A, , is an eventually positive solution. We define
a subset S of the positive numbers as follows:

S()‘) = {A > O|aAm+1,n + bAm,n—i—l - [(d —C— AQm,n]Am,n S 07 eventually}.
From (2.3) and Lemma 2.1, we have
a'Am-i-l,n + bAm,n-l—l - (d —C— HIUOG;TOQm,n)Am,n S Oa

which implies 6, 7°6,™ € S(A). Hence, S(A\) is nonempty. For A € S, we have
eventually that d — ¢ — AQyy, > 0, which implies that S C E, Due to condition (i),
the set E is bounded, and hence, S()) is bounded. Let v € S. Then from Lemma
2.1, we have

a b
(9 )Am+1 n+1
D)

IA

aAm+1,n + bAm;rH—l
= (d —C— uQm,n)Am,n~
34
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If o9 > 79 > 0, then

a b9
Am,n S (@ + E) 0 E(d —C— uQm—i,n—i)Am—To,n—Toa
and for j =1,2,--- ,09 — 79, we have
a b 15
Amfj,n S (g + E) 0 H(d —C— ume’i*j,ﬂf’i)Ameofj,nfTo
1:1() . (2.7)
00— a T
< 9 o 3(02 + 97) © Zl;[l(d —C— uQm—i—j,n—i)Am—Ug,n—To-
Now, from Lemma 2.1 and (2.7), it follows that
a b ( ) ( UO To ToO
o T 7o (O T oo0— To o T
Awgno (?2+01) 0L70TT0) ) H H — = uQm—i—jn— Z)]An"? gﬁ,’,n 707
j=1 =1
i. e.,
L | | | ([N oy
m,n > 92 91 1 R m—i—j,n—i m—og,n—To"*
(2.8)
Similarly, if 79 > o¢ > 0, then
a b —00(t0—00 g(T0—00)* T 1T ot
Amn < {(@JFOT) 05 [ ]1;[1 il;[l(d_c_umei,n—ifj)}} 0770 Apy— g9 ,n—7-
(2.9)

Substituting (2.8) and (2.9) into (2.3), we get respectively, for o¢ > 79,

aAerLn + bAm,nJrl - (d - C)A’I’I’LJ’L
a go—T0 To

b 1
+ Qm n( + 91) 09 0( H [H(d —C— uQm—i—j,n—iﬂ 70790 Amm <0,

=1 i=1
and for 75 > 00,

aAm+1,7L + bAm,n+1 - (d - C)Am,n

T oo O
a b 0—00 0

+ an( 91>00 00 TO H H —c—uQm_ in—i— j)]”o 7"’Amn_

j=1 =1

Hence, for o¢ > 79,

aAm+1,n + bAm,n+1 - {d —Cc— Qm n(

)7'097'0—00

91
T (2.10)
su —c—u ool A 0,
7rL>MI7)L>N ]]‘_[1 H Qm 1—j,n— Z)] } m,n >
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and for 5 > oy,

)00900—7'0

aAm+1,n + bAm,n+1 {d —C— Qm n( 91

o0 o0 1 (2.11)
X sup | H H(d — ¢ = UQm—in—i—;3]) 070 tAmn < 0.

m>Mn>N =1 =1

From (2.10) and (2.11), we get

oo—To To
(;2 0b1>T°9T° e ]1;[1 E(d_c—umeifj,nfi)]ﬁ} €5 for oo >0,
(2.12)
and
a b To—00 00 1
(g0 sw [ [T—e-uQm-in-i-y))" ) €S for 70> 00,
m>M,n>N j=1 i=1
(2.13)

On the other hand, (2.5) implies that there exists a; € (0,1) (we can choose the
same) such that for o9 > 79

‘70 70 TO

b T TO— O}
swp AT T 3Qumim i )77 < an( 4500, (210

/\EEm>Mn>N G=1 i=1 2

and (2.6) implies that there exists a; € (0,1) (we can choose the same) such that
for 79 > 09 > 0,

T0—00 00

—Cc — V] 7o—0 b g0Qoo—T0
AeE,A?;E)n,N>n Jl_[1 Z]'_‘[ ¢ = AQm-in—i=g)] 0770 " <a1(92 91) %
(2.15)
In particular, (2.14) and (2.15) lead to (when A = u), respectively,
a b U" AL
(@+91)T091—0 " \EE bl;% SN H H (d—c—uQm—i- Jin— 1)]70 70 > —for 00 > To,
MZMNZN =1 =1
(2.16)
and
a b T“ 7075
(9—+0—)"0050*T° sup H H (d—c—uQm—in—i— j)]“o o > —for To > 00.
2 01 AeBMZmN2n Sy Gl
(2.17)

Since u € S and v’ < w implies that v’ € S, it follows from (2.12) and (2.16) for
oo > To, (2.13) and (2.17) for 70 > 0¢ that ;- € S. Repeating the above arguments

U
with u replaced by —, we get ﬁ € S, where ay € (0,1). Continuing in this way,
ai

u

we obtain —s—— € S, where a; € (0,1). This contradicts the boundedness of S.
i—1 @

The proof is Zcomplete. O
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Corollary 2.1 In addition to (i) of Theorem 2.1, assume that for o9 > 79 > 0,

1 go—T0 To (d _ C)T()+1 6’0 a b
li ! fi m—i—jn—i > T 7—0900 TO,
m,vlLrgooln (o9 — T0)Ti le ;Q g (10 + 1)70+1 (02 + 91)

and for 7y > o¢ > 0,

y - 1 T0—00 00 Q - (d _ C)Uo+1 80( a n b ) 0097-0,0-0
im inf —— E E m—im—i— - .
m,n—00 (7'0 - UO)UO =1 =1 J (UO + 1)00+1 92 91 2

Then every solution of (1.1) oscillates.

Proof. We note that

_ ~\To+1._70
max A(d—c—Xe)® = m.
=9 > x>0 e(ro + 1)mott

We shall use this for

oo—T0 70

€= E E Qm?]nl
(70—7'0
i=

Clearly,

o0—

H(d —C—= /\Qm—i—j,n—i)]ﬁ

j=1 =1
1 g0—T0 ToO
< >\ JO_TO ZZ _C_/\szyn 1,)]0
j=1 =1
)\ go—T70 ToO
< )\d* - m—i— n7 o
< Ni-em 2 S
Jj=1 =1
<w—mwﬁ
- €(T0+].)TO+1
a b
< (4 000,
(g, T 9,0

Similarly, we have

T0—00 00

B | | R e

j=1 =1

)00900 7’0

By Theorem 2.1, every solutions of (1.1) oscillates. The proof is complete. [

By a similar argument, we have the following results:
Theorem 2.3 Assume that

(1) limm,naoo sup Qm,n > 0;

37



Comparison Theorem for Oscillation of Nonlinear Delay Partial Difference
Equations

(ii) there exists M > mg, N > ng such that if oo = 79 > 0,

Skl a b
su )‘lld_c_)‘ m—in—i) < *“F*UO
,\eE,Man,Nzn i:l( @ i) (6’2 91)

Then every solution of (1.1) oscillates.
Corollary 2.2 If the condition of Theorem 2.2 holds, and

(d—c)otal® a b

. . - R —0o
ml}fgoo inf Qm,n =q> (o0 + 1)70+T 6, ' 6y ’

Then every solution of (1.1) oscillates.

Theorem 2.4 Assume that

(1) hmm,n—mo sup Qm,n > 05

(ii) there exists M > mg, N > ng such that either

70 00

i — T
sup MIT T = ¢ = AQum—im—j)]70 < a”05™,
NeEM>mN>n 0

or
oo 70

sup A d—c—AQm-in_j)]70 < b0
e A ) 1
Then every solution of (1.1) oscillates.

Corollary 2.3 In addition to (i) of Theorem 2.3, assume that for og, 79 > 0,

either
70 ago ey
lim inf L E E Qm,i,n,j > aiaoﬁg‘) Ll,
m,n— 00 000 ‘= = (00 + 1)Uo+
j=1 i=

or
g0 ) To0

1 T
lim inf — i >bTTop O
oo 7070 ; ]z_; Qm 1,n—] 1 (7_0 + 1)'ro+1,

Then every solution of (1.1) oscillates.

Theorem 2.5 Assume that

(1) limm,nﬁoo sup Qm,n > 0;
(ii) there exists M > mg, N > ng such that if oo > 0,79 = 0,

g0

sup A H(d — = AQm—in) < a’.
ANeE,M>m,N>n i—1

Then every solution of (1.1) oscillates.
Corollary 2.4 In addition to (i) of Theorem 2.4, assume that oy > 0,79 = 0,
and

- (- erioge
mylflLrgoo inf Qum.n > a%0(og 4 1)70+t’

Then every solution of (1.1) oscillates.
Theorem 2.6 Assume that

(1) limm,naoo sup Qm,n > 0;
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(ii) there exists M > mg, N > ng such that if g = 0,79 > 0,

70

sup A== AQmn—j) <b™.
J

AEE,M>m,N>n P

Then every solution of (1.1) oscillates.
Corollary 2.5 In addition to (i) of Theorem 2.5, assume that g = 0,79 > 0,
and
O e aae
m,rlzrgloo m Qm,n = bTo (To + 1)T0+1.
Then every solution of (1.1) oscillates.
Theorem 2.7 Assume that
(1) limy, n—s 00 SUP Qm,n > 0;
(ii) for o9, 9 > 0,

lim infQ@Qp, =g >0, (2.18)
m,n— oo
and
. by
m,]:rllriloo Qm’n > (d - 0)010920 - Wq > 0. (219)

Then every solution of (1.1) oscillates.

Proof. Suppose, to the contrary, A,, ,, is an eventually positive solution. From (2.3)
and (2.18), for any € > 0, we have @y, , > g — € for m > M,n > N. From (2.3),
Lemma 2.1 and above inequality, we obtain

Gz, Jlaz9
“(d=¢) R CAS)
(¢g—¢) (¢—¢
(d—c¢) (d—c)
Substituting above inequalities into (2.3), we get

1—00pnl—T7
91 082 OAmfl,nflv

Am,n > eiiaoegToAm—an and Am,n > 0;009%*T0Am7n_1.

91700977'0 +b9*0091*7’0
[a 1 % T L7 (q_e)—(d—c)+Qm7n9;"°95“}Am7n <0,

which implies

ab; + b,
li mn < (d—¢)07°05° — ————q > 0.
m,vlzrgooQ ) —( C)l 2 (d—C) q
This contradicts (2.19). The proof is complete. O
Theorem 2.8 Assume that
(1) limp, n—oo SUP Qmn > 0;
(ii) o9 = 70 = 0, and
lim sup@Qpmn>d—ec. (2.20)

m,n— oo
Then every solution of (1.1) oscillates.
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Proof. Let u € S. Then from (2.3) and Lemma 2.1, we have —(d—¢) + QunAmn <
0, which implies limy, 5,00 SUP Qm.n < d — c.
This contradicts (2.20). The proof is complete. O
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