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Abstract: In this paper, we proposed the error growth curve model for
the integration of intertemporal measure errors correlation which usually ex-
ist in quality control process. This model can work well in the usual error
distributions, such as normal, uniform, Rayleigh and some other error distri-
butions. Simulation results show that the proposed estimators of the model
parameters perform well especially in small sample situations.
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1. INTRODUCTION

Observations that occur in natural science and social science are usually measured
over multiple time points on a particular characteristic to investigate temporal pat-
tern of change on the characteristic. Especially, every product in production line
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usually will be measured in all different steps. In general, quality management and
technical statistics [1] seems to pay more attention to the error controlling in every
step of producing. In fact, those errors in different steps of the whole production
line maybe exist some certain correlations each other which have not been attracted
enough interest up to now. Meanwhile, these error terms maybe some more general
error distributions instead of normal distributions [1].

In this paper, we propose the framework of the investigation on these intertem-
poral correlation in more general error distributions. The paper are organized as
follows:

Our main interest is the investigation on the multiple measurement error cor-
relation structure, so the regression structure may be trivial. For convenience, we
consider the following error growth curve model.

Yn×p = Xn×mΘm×p + εn×p, E(εn×p) = 0, and Cov(εn×p) = In ⊗ Σp×p (1)

Where Yn×p is the observation matrix of the response consisting of p measure-
ments taken on n products or individuals, Xn×m is the treatment design matrix
with order n × m, Θm×p is the unknown regression coefficient matrix with order
m×p. Assume that observations on individuals are independent, so that the rows of
the random error matrix εn×p are independent and identically distributed (i.i.d.) by
a general continuous type distribution Γ with zero mean and a common covariance
matrix Sigma of order p. And we assume that the rank of the treatment design
matrix Xn×m is less than the number of observations, i.e., r(Xn×m) < n. For con-
venience, these notations will be omitted its subscripts in the following part. In the
recent years, many growth curve problems are attracted in the researchers’ interest,
and some kinds of growth curve models are deeply studied. An interested reader
can refer to Kollo and von Rosen [2], Pan and Fang [3], Hu, Liu and Ahmed [4] or
Hu, Liu and You [5], Reinsel [8], Ohlson and von Rosen [9].

2. ESTIMATORS AND ITS PROPERTIES

Without the assumption of normality, the ML estimators [6,7] can’t be suitable with
this situation. Obviously, looking for the general ML estimators in general error
distributions is impossible. Here we directly propose the corresponding estimator of
covariance by COPLS approach for the model (1) without assumption of normality.

Σ̂ =
1

n− r
Y ′MXY (2)

and two-stage GLS estimator for the regression coefficient matrix

Θ̂ = (X ′X)
−1
X ′Y (3)

where MX = In−PX = In−X(X ′X)
−1
X ′ denotes the orthogonal projection matrix

onto the orthogonal complement C(X)⊥ of the column space C(X) of a matrix X.
And the COPLS method and the corresponding two-stage GLS estimation have been
discussed carefully in [4,5], so here we omit some unnecessary theoretical details.

Firstly, we list some regular conditions of the model (1).

Assumption 1. E(ε1) = 0, E(ε1ε
′
1) = Σ > 0, E(ε1⊗ε1ε′1) = 0p2×p and E‖ε1‖4 <

∞, where ε′1 is the first row vector of the error matrix ε.
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Assumption 2. Assume that lim
n→∞

1

n
X ′X = R > 0

Theorem 1 The covariance estimator given by (2) is strong consistent to co-

variance Σ. Meanwhile, under assumption 1, the statistic
√
n
(

Σ̂− Σ
)

converges in

distribution to the multivariate normal distribution Np2 (0, Cov(ε1 ⊗ ε1)).

Theorem 2 Under assumption 2, the estimator Θ̂ is consistent to regression
coefficients Θ.

Theorem 3 Under assumptions 1 and 2, then (a)
√
n
(

Θ̂−Θ
)

converges in dis-

tribution to the multivariate normal distributionNmp(0, R−1⊗Σ) and (b)
√
n
(

Σ̂− Σ
)

and
√
n
(

Θ̂−Θ
)

are asymptotically independent.

The corresponding proofs of these theorems above will be given in the appendix.

3. SIMULATION STUDIES

In this section, we conduct some simulation studies to show the finite sample per-
formance of the proposed procedure in previous section. The data are generated
from the following model

Yn×p = Xn×mΘm×p + εn×p, Cov(εn×p = In ⊗ Σp×p), and E(εn×p) = 0

where p = 4, the sample size n = 30, 50, 80 with the design matrices X =

diag( 1n
2

1n
2 ), the true Θ =

(
−1 1 2 1
1 3 5 2

)
. We assume the covariance Σ

is the autoregressive structure, namely Σ =
1

1− ρ2


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1

 with

ρ = 0.0, 0.1, 0.3, 0.5, and the marginal distribution of ε1 is assumed the uniform
distribution U(−2, 2).

For evaluating the performance of these matrix form estimators, we define the ac-
cumulation of absolute value of estimators’ bias (abbr. AAB) as follows, AAB(Θ̂) =∑
i,j

∣∣∣bias(θ̂i,j)∣∣∣, AAB(Σ̂) =
∑
i,j

|bias(σ̂i,j)|. The number of simulated realizations is

1, 000, some results are summarized as follows.

n = 30, ρ 0 0.1 0.3 0.5

AAB(Θ̂) 0.0486 0.0789 0.0730 0.0985

AAB(Σ̂) 0.0758 0.06561 0.0571 0.1581
n = 50, ρ 0 0.1 0.3 0.5

AAB(Θ̂) 0.0321 0.0494 0.0543 0.0638

AAB(Σ̂) 0.0324 0.0367 0.0630 0.1029
n = 80, ρ 0 0.1 0.3 0.5

AAB(Θ̂) 0.0656 0.0705 0.0843 0.0851

AAB(Σ̂) 0.0302 0.0378 0.0477 0.0490

The simulation results show that the performance of the proposed estimators
perform certain robust statistical properties in the more general error distributions,
especially in the small sample situations. Some other error distributions are also

89



A General Model on Intertemporal Measure Correlation

investigated in these models, and some similar performance can be obtained, so the
results are omitted here.

4. CONCLUSION

In this paper, we proposed the error growth curve model for the investigation on
the intermporal measure errors correlation which usually exist in quality control
process. This model can work well in the usual error distributions, such as normal,
uniform, Rayleigh and some other error distributions. Simulation results show that
the proposed estimators of the model parameters perform well especially in small
sample situations.
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APPENDIX

Proof of Theorem 1 The estimator’s consistent is obvious, the discussion for the
strong consistent is similar with Hu, Liu and Ahemed [4], here, we omit the details
and only discuss the asymptotic distribution of the covariance estimator.

√
n
(

Σ̂− Σ
)

can be decomposed into
√
n

(
1

n
ε′ε− Σ

)
+ Q

(
A11 A12

A21 0

)
Q′

with Akl =
√
n

(
1

n− r
n−r∑
i=1

wikwik
′ −

1

n

n∑
i=1

wikwik
′

)
for k, l = 1, 2 except k = l = 2.

Since

Akl =
r
√
n

n− r
1

n

n∑
i=1

wikwik
′ −

√
n

n− r

n∑
i=1

wikwik
′

Akl converges to 0 in probability. By assumption, the first item converges to
Np2(0,Ψ) in distribution, where Ψ = Cov(ε1 ⊗ ε1). Hence, it follows from Slut-

sky’s Theorem, see Lehmann and Romano [10], that the
√
n(Σ̂− Σ) converges in

distribution to Np2(0, Cov(ε1 ⊗ ε1)), completing the proof.
Proof of Theorem 2
Note that the fact

P

(∥∥∥∥∥ 1

n
X ′ε

∥∥∥∥∥ ≥ δ
)
≤

1

n2δ2
E (Tr(X ′εε′X)) =

1

nδ2
Tr

(
1

n
X ′X

)
Tr (Σ)

for any δ > 0, then the convergence in probability is easily obtained.
Proof of Theorem 3
(a)
√
n(Θ̂−Θ) can be transformed into

√
n
(
(X ′X)−1X ′ε

)
, let Ln = (X ′X)−1X ′ε.

By Theorem 4.2 of Hu and Yan [11],
√
nLn converges in distribution to the normal

distribution Nmp(0, R−1 ⊗ Σ).

(b) It suffices to prove the asymptotically independence between
1
√
n
vec(X ′ε)

and
√
nvec(Σ̂−Σ). LetQn = X ′ε = (x1, ..., xn)(ε1, ..., εn)′. Then Cov(Qn(Σ̂−Σ)) =

Cov

(
(

n∑
i=1

xiεi
′)(

1

n

n∑
i=1

εiε
′
i − Σ)

)
+op(1) = E

(
(

n∑
i=1

xi ⊗ εi′)(
n∑

i=1

εi ⊗ ε′i − Σ)

)
+op(1)

According to assumption 2, Cov

(
(

1
√
n
X ′ε)

√
n(Σ̂− Σ)

)
converges to 0 in prob-

ability, implying that
1
√
n
vec(X ′ε) and

√
nvec(Σ̂− Σ) are asymptotically indepen-

dent. Therefore, the proof is complete.
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