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Abstract: This paper is concerned with the pricing of perpetual American
put options when the dynamics of the risky underlying asset are driven by
a jump diffusion with Markovian switching. By using the “modified smooth
pasting” technique, we derive an explicit optimal stopping rule and the cor-
responding value function in a closed form. Finally, we present a numerical
example to illustrate the application of the exact solution.
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1. INTRODUCTION

Though outstandingly successful as a leading-order model for an asset price, the
familiar log-Brownian paradigm falls in various ways, such as the fact that implied
volatility is not constant. To overcome these shortcomings, many different option
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valuation models with more realistic price dynamics have been proposed and tested.
An important class of stock prices is the Markov-modulated Geometric Brownian
Motion (GBM),

dX(t) = µy(t)X(t)dt+ σy(t)X(t)dW (t), (1)

where y(t) ∈ {1, · · · , S} is a finite-state continuous time Markov chain and W (t)
is a standard Brownian motion. Such a GBM is also known as the GBM with
Makovian switching. Some authors call it GBM with regime switching. Here the
states of the Markov chain y(t) is called regimes which can be interpreted as the
structural changes in economic conditions, the changes in political regimes, the
impact of (macro-) economic news and business cycles, etc.. One of the important
issues in the study of Makov-modulated GBM is option pricing. There is a large
literature in this area, for example [6,8–10], a few to name.

However, empirical studies and large literature show that prices can generate
sudden, discontinuous moves. Hence it is more realistic in practice if the ‘jumps’
in the stock prices are considered. Motivated by [5], [15] and [16], in the present
paper, we consider a stock whose price is modeled as

dX(t) = µy(t)X(t)dt+ σy(t)X(t)dW (t) +X(t−)

∫
R

zÑ(dt, dz), (2)

where y(t) ∈ {1, · · · , S} is a finite-state continuous time Markov chain and W (t) is
a standard Brownian motion. Here y(t) and W (t) are defined on (Ω,F , P ) and are
independent. Let {Ft = σ{(W (s), y(s))|s ≤ t}} be an increasing family of sub-σ-
algebras of F , and W (t) an Ft adapted; let N(dt, dz) (corresponding to a random
point function N(t)) be a stationary Ft Poisson point process being independent of

W (t), and let Ñ(dt, dz) = N(dt, dz)− ν(dz)dt be the compensated Poisson random
measure on [0,∞)×R, where ν(.) is a deterministic finite characteristic measure on
the measurable space (R \ {0},B(R \ {0})). We denote the jump size distribution
and the intensity of the compound Poisson process, F (x) and Λ, respectively. To
guarantee the existence and uniqueness of the solution to the equation (2), we
assume that ∫

R

|z|2ν(dz) <∞. (3)

Moreover, for a given y(t) = i, µi and σi (i = 1, · · · , S) are constants and known.
To the best of our knowledge, there is so far little on America option pricing when
stock price is modeled by (2) and our aim here is mainly to close the gap.

As we all know, a perpetual American put option is a derivative that gives its
holder the option but not the obligation of exercising a share of stock at his/her
choice of time τ (τ ≥ 0), with a payoff (K −Xτ )+ = max{0,K −Xτ}. Here, K is
the strike price. It is well known that under a risk neutral measure, the value of this
option is the expected discounted value of its future cash flow. For more details,
readers are referred to Elliott et al. [7]. Hence, the optimal stopping problem
becomes valuation of the value function

V (x, i) = sup
0≤τ≤∞

E[e−rτ (K −X(τ))
+ |X(0) = x, y(0) = i], (4)

where r > 0 is the discounted factor, X(t) is given by (2), and τ is a Ft stopping
time. Elliott et al. [7] consider the pricing of a European call option when the risky
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underlying asset are driven by generalized Markov-modulated jump diffusion mod-
el. They use the regime switching generalized Esscher transform to determine an
equivalent martingale measure. Moreover, they derive a system of coupled partial-
differential-integral equations satisfied by the European option prices.

The primary purpose of this paper is to derive the explicit solution of the value
function (4) for S = 2. This is an optimal stopping problem with an infinite
time horizon and with state space {(x, i)|x > 0, i = 1, 2}. The methods in this
paper depend heavily on negative real roots of the integral differential equation
and modified principle of smooth pasting. By using the modified principle smooth
pasting, we obtain a closed-form solution. We start in Section 2 to establish the
system of partial-integro-differential equation satisfied by the value function, and
analyze the form of value function. In Section 3, we establish that the proposed the
solution coincides with the value function. At last, a numerical solution is presented.

2. THE DERIVATION OF SOLUTIONS

In this section, we will analyze that the value function (4) when the risky asset X(t)
follows the stochastic differential equation (2). Throughout the paper, we assume
that the Markov chain y(t) takes two values 1 and 2. Further, we assume that
σ1 6= σ2 and that the Markov chain has a generator of the form(

−λ1 λ1
λ2 −λ2

)
, (5)

with λ1, λ2 > 0.
Recall that when the risky asset follows the Markov-modulated GBM, it is shown

that the continuation region depends on the state y(t). It is natural to guess that
the continuation region in Markov-modulated jump diffusion model has the similar
form. In other words, we expect the existence of two thresholds x1, x2 ≤ K, so that
the optimal stopping rule is given as

τ∗ = inf{t > 0|(X(t), y(t)) /∈ D},

where
D = {(x, i)|V ∗(x, i) > (K − x)+}.

The set D is referred to as the continuation region. Using τ∗, the corresponding
value functions are

V ∗(x, i) = E[e−rτ
∗
(K −X(τ∗))+|X(0) = x, y(t) = i]. (6)

We consider the case when D can be represented by two threshold levels x1 and
x2, i.e.,

D = {(x, 1)|x ∈ (x1,∞)} ∪ {(x, 2)|x ∈ (x2,∞)}.

Notice that x1 and x2 may depend on r, K, µi, σi, λi. For any x1 and x2, there
are only three possibilities x1 < x2, x1 > x2, and x1 = x2. In the rest of this
Section, we discuss each of these cases and derive the values of these thresholds
xi as well as the corresponding value functions (denoted as V (x, i) obtained from
exercising this type of stopping rule). We will then prove the optimality of these
value functions, i.e., V ∗(x, i) = V (x, i).
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Case 1: x1 < x2 ≤ K. At any given time t, if X(t) ≤ x1, then one should stop
immediately and obtain a payoff of (K −X(t))+; this follows from the definition of
the continuation region. However, if X(t) ≤ x2, with y(t) = 1, it is not to stop until
X(t) ≤ x1. By Ito’s formula, we can follow the value functions V (x, 1) and V (x, 2)
satisfy the following partial-differential-integral equations. For x ∈ [x2,+∞)

µ1xV
′
x(x, 1) + 1

2σ
2
1x

2V ′′xx(x, 1) +
∫
R

[V (x+ xz, 1)− V (x, 1)]ν(dz)
−(λ1 + r1)V (x, 1) + λ1V (x, 2) = 0,

µ2xV
′
x(x, 2) + 1

2σ
2
2x

2V ′′xx(x, 2) +
∫
R

[V (x+ xz, 2)− V (x, 2)]ν(dz)
−(λ2 + r)V (x, 2) + λ2V (x, 1) = 0;

(7)

for x ∈ [x1, x2], we have
µ1xV

′
x(x, 1) + 1

2σ
2
1x

2V ′′xx(x, 1) +
∫
R

[V (x+ xz, 1)− V (x, 1)]ν(dz)
−(λ1 + r1)V (x, 1) + λ1V (x, 2) = 0,

V (x, 2) = K − x;

(8)

and for x ∈ [0, x1]
V (x, 1) = V (x, 2) = K − x. (9)

Now, let us solve the system (7). Inspired by Guo and Zhang [10], we introduce
the following characteristic function

g1(β)g2(β) = λ1λ2, (10)

where

g1(β) = λ1 + r − µ1β −
1

2
σ2
1β(β − 1)−

∫
R

[
(1 + z)β − 1

]
ν(dz),

g2(β) = λ2 + r − µ2β −
1

2
σ2
2β(β − 1)−

∫
R

[
(1 + z)β − 1

]
ν(dz).

We will see that in this case the solutions to the value functions are closely
related to the roots of

g1(β) = 0. (11)

Proposition 2.1. The equation (11) has at least two real roots, of which has a
unique negative root, say γ1.

Proof. The continuity of function g1(β) on (−∞,+∞), lim
β→−∞

g1(β) = lim
β→+∞

g1(β) =

−∞, and the fact that g(0) = λ1 + r, imply that the existence of two roots in equa-
tion (11). We conclude that equation (11) has at least two roots.

It remains to prove the uniqueness of the negative real root. Let p1(β) = λ1+r−

µ1β−
1

2
σ2
1β(β−1). On the half circle in the complex plane given by z = r (for r > 0

fixed) and R(z) ≤ 0) we have |p(s)| > 2|
∫
R

(1+z)ν(dz)| ≥ |
∫
R

[(1+z)β−1]ν(dz)|. By
Rouché Theorem, equation g1(β) = 0 and equation p1(β) = 0 have the same number
of zeros on the interior of half circle. Since the later has a unique negative real root

s1 =

1

2
σ2
1 − µ1 −

√
(
1

2
σ2
1 − µ1)2 + 2σ2

1(λ1 + r)

σ2
1

, this completes the proof.
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For notational convenience, denote γ2 the least positive root of equation (11).

Proposition 2.2. If σ1, σ2, λ1, λ2 are positive constants, then the equation

g1(β)g2(β) = λ1λ2 (12)

has at least four distinct roots, of which has exactly two negative roots, say β1, β2.

Proof. We note that lim
β→+∞

g1(β) = −∞, lim
β→−∞

g1(β) = −∞, and g1(0) = λ1 + r.

The continuity of g1(θ) implies that there are two roots which satisfy equation
g1(θ) = 0.

Let

f(β) =
[
λ1 + r − µ1β − 1

2σ
2
1β(β − 1)−

∫
R

[
(1 + z)β − 1

]
ν(dz)

]
×
[
λ2 + r − µ2β − 1

2σ
2
2β(β − 1)−

∫
R

[
(1 + z)β − 1

]
ν(dz)

]
− λ1λ2.

Let θ1, θ2 be the roots of the corresponding quadratic equation

g1(β) = λ1 + r − µ1β −
1

2
σ2
1β(β − 1)−

∫
R

[(1 + z)β − 1]ν(dz) = 0. (13)

Clearly, the continuous function f(β) satisfies f(0) = r2 +(λ1 +λ2)r > 0, f(−∞) >
0, f(+∞) > 0 and f(θi) = −λ1λ2 < 0 for i = 1, 2. Since θ1θ2 < 0, it follows
that the equation f(β) = 0 has at least four real roots. Next, we will show the
number of negative real roots of equation (13) is two. Similarly the proof above,
put pi(β) = λi + r− µiβ − 1

2σ
2
i β(β − 1), i = 1, 2. Considering the half circle in the

complex Γ = {z||z| = r,Re(z) < 0}
⋃
{z||z| ≤ r,R(z) = 0}, when r is sufficiently

large, it is easy to check that on the closed contour Γ

|p1(β)p2(β)| >∣∣∣∣∣−
∫
R

[
(1 + z)β − 1

]
ν(dz) (p1(β) + p2(β)) +

{∫
R

[
(1 + z)β − 1

]
ν(dz)

}2

− λ1λ2

∣∣∣∣∣
By the Rouché’s Theorem, equation

p1(β)p2(β)−
∫
R

[
(1 + z)β − 1

]
ν(dz) (p1(β) + p2(β))

+

{∫
R

[
(1 + z)β − 1

]
ν(dz)

}2

− λ1λ2 = 0

and equation p1(β)p2(β) = 0 have the same number of zeros inside Γ. This com-
pletes the proof.

For simplicity, we number the positive roots by β3, β4, · · · , βn, n ≥ 3.

Proposition 2.3. The value function V (x, i) defined by (6) satisfy the principe of
smooth pasting.

Proof. For given y(t) = i, the risky asset process X(t) is unbounded variation. By
Proposition 7 in [1], the point 0 is regular for (−∞, 0). Again by using Theorem 6
in [1], the result is followed.

69



An Explicit Solution for Perpetual American Put Options in a Markov-Modulated
Jump Diffusion Model

To solve the system (7), we try the value functions of the form

V (x, 1) =

n∑
i=1

Aix
βi , (14)

V (x, 2) =

n∑
i=1

Bix
βi , (15)

with Bi = liAi and li =
g1(βi)

λ1
Ai =

g2(βi)

λ2
Ai.

Note that when x → ∞, V (x, 1) and V (x, 2) are bounded. Thus, the positive
powers of x should be eliminated so that

V (x, 1) = A1x
β1 +A2x

β2 , (16)

V (x, 2) = B1x
β1 +B2x

β2 . (17)

Next, we get down to solve (8). The first equation is an inhomogenous integral-
differential equation. By Proposition 2.1, we can consider the solution of the fol-
lowing form

V (x, 1) = C1x
γ1 + C2x

γ2 + ψ(x),

where ψ(x) is a special solution and γ1, γ2 are given by Proposition 2.1.
In particular, when µ1 − λ1 − r 6= 0, one can choose

ψ(x) =
λ1 +

∫
R
zν(dz)

µ1 − λ1 − r
x+

λ1K

λ1 + r
. (18)

Now, we would like to determine A1, A2, C1, C2, x1, x2. To this end, appropriated
boundary conditions are needed. Applying the smooth pasting at x2, condition
V (x2+, 2) = V (x2−, 2) and V ′(x2+, 2) = V ′(x2−, 2) imply{

B1x
β1

2 +B2x
β2

2 = K − x2,
β1B1x

β1−1
2 + β2B2x

β2−1
2 = −1.

(19)

Similarly, the smoothness of V (x, 1) at x1 and x2 yields{
A1x

β1

2 +A2x
β2

2 = C1x
γ1
2 + C2x

γ2
2 + ψ(x2),

β1A1x
β1−1
2 + β2A2x

β2−1
2 = C1γ1x

γ1−1
2 + C2γ2x

γ2−1
2 + ψ′(x2),

(20)

and {
C1x

γ1
1 + C2x

γ2
1 + ψ(x1) = K − x1,

γ1C1x
γ1
1 + γ2C2x

γ2
1 + x1ψ

′(x1) = −x1.
(21)

Combing the above three equations and following some algebraic manipulation,
we obtain an algebraic equation for x1 and x2(

x−γ11 0

0 x−γ21

)
F1(x1) =

(
x−γ12 0

0 x−γ22

)
F2(x2), (22)

where

F (x1) =

(
1 1
γ1 γ2

)−1(
K − x1 − ψ(x1)
−x1 − x1ψ′(x1)

)
(23)
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and

F2(x2) =(
1 1
γ1 γ2

)−1 [(
1 1
β1 β2

)(
l1 l2
β1l1 β2l2

)−1(
K − x2
−x2

)
−
(

ψ(x2)
x2ψ

′(x2)

)]
.

(24)
In particular, if µ1 − λ1 − r 6= 0, where ψ(x1) is in the form of (18), then

F1(x1) = a1 + a2x1

and
F2(x2) = b1 + b2x2.

Here

a1 =

(
1 1
γ1 γ2

)−1( rK
r+λ1

0

)
,

a2 = −
(

1 1
γ1 γ2

)−1( 1 +
λ1+

∫
R
zν(dz)

µ1−λ1−r

1 +
λ1+

∫
R
zν(dz)

µ1−λ1−r

)
,

b1 =

(
1 1
γ1 γ2

)−1 [(
1 1
β1 β2

)(
l1 l2
l1β1 l2β2

)−1(
K
0

)
−
(

λ1K
λ1+r

0

)]
,

b2 =

(
1 1
γ1 γ2

)−1 [(
1 1
β1 β2

)(
l1 l2
l1β1 l2β2

)−1( −1
−1

)
−

(
λ1+

∫
R
zν(dz)

µ1−λ1−r
λ1+

∫
R
zν(dz)

µ1−λ1−r

)]

The coefficients are given by(
A1

A2

)
=

(
l1x

β1

2 l2x
β2

2

l1β1x
β1

2 l1β2x
β2

2

)−1(
K − x2
−x2

)
,

(
B1

B2

)
=

(
l1A1

l2A2

)
,

(
C1

C2

)
=

(
x−γ11 0

0 x−γ21

)(
1 1
γ1 γ2

)−1(
K − x1 − ψ(x1)
−x1 − x1ψ′(x1)

)
.

With these coefficients, the value functions become

V (x, 1) =

 A1x
β1 +A2x

β2 if x > x2,
C1x

γ1 + C2x
γ2 + ψ(x) if x1 < x ≤ x2,

K − x if x ≤ x1,
(25)

V (x, 2) =

{
B1x

β1 +B2x
β2 if x > x2,

K − x if x ≤ x2.
(26)

Case 2: x2 < x1 ≤ K. The derivation of this case is analogous to that of
x1 < x2, and we only summarize the results below. By Proposition 2.1, we let γ̃1,
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γ̃2 ( similar to definition of γ1 and γ2. In addition, denote γ2 the least positive root)
be the two real roots of

µ2γ +
1

2
σ2
2γ

2 +

∫
R

[(1 + z)γ − 1]ν(dz)− (λ2 + r) = 0,

and ψ̃(x) be a particular solution to

V ′x(x, 2) +
1

2
σ2x2V ′′xx(x, 2)

+

∫
R

[V (x+ xz, 2)− V (x, 2)]ν(dz)− (λ2 + r)V (x, 2) + λ2(K − x) = 0.

In particular, when µ2 − λ2 − r 6= 0, one can choose

ψ̃(x) =
λ2 +

∫
R
zν(dz)

µ2 − λ2 − r
x+

λ2K

λ2 + r
. (27)

In addition, x1, x2 satisfy(
x−γ̃11 0

0 x−γ̃21

)
F̃1(x1) =

(
x−γ̃12 0

0 x−γ̃12

)
F̃2(x2), (28)

where

F̃1(x1) =(
1 1
γ̃1 γ̃2

)−1 [(
1 1
β1 β2

)(
l̃1 l̃2
β1 l̃1 β2 l̃2

)−1(
K − x1
−x1

)
−

(
ψ̃(x1)

x1ψ̃
′(x1)

)]
,

(29)
and

F̃2(x2) =

(
1 1
γ̃1 γ̃2

)−1(
K − x2 − ψ̃(x2)

−x2 − x2ψ̃′(x2)

)
, (30)

where l̃i =
1

li
.

In particular, if µ2 − λ2 − r 6= 0, where ψ(x1) is in the form of (27), then

F̃1(x1) = ã1 + ã2x1

and
F̃2(x2) = b̃1 + b̃2x2.

Here

ã1 =

(
1 1
γ̃1 γ̃2

)−1 ( 1 1
β1 β2

)(
l̃1 l̃2
l̃1β1 l̃2β2

)−1(
−K

0

)
−
(

λ2K
λ2+r

0

) ,

ã2 =

(
1 1
γ̃1 γ̃2

)−1 ( 1 1
β1 β2

)(
l̃1 l̃2
l̃1β1 l̃2β2

)−1(
−1
−1

)
−

(
λ2+

∫
R
zν(dz)

µ2−λ2−r
λ2+

∫
R
zν(dz)

µ2−λ2−r

) ,
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b̃1 =

(
1 1
γ̃1 γ̃2

)−1( rK
r+λ2

0

)
,

b̃2 = −
(

1 1
γ̃1 γ̃2

)−1( 1 +
λ2+

∫
R
zν(dz)

µ2−λ2−r

1 +
λ2+

∫
R
zν(dz)

µ2−λ2−r

)
.

The coefficients are given by(
Ã1

Ã2

)
=

(
l1x

β1

1 l2x
β2

1

l1β1x
β1

1 l2β2x
β2

1

)−1(
K − x2
−x2

)
(
B̃1

B̃2

)
=

(
l1Ã1

l2Ã2

)
.

(
C̃1

C̃2

)
=

(
x−γ̃11 0

0 x−γ̃21

)(
1 1
γ1 γ2

)−1(
K − x1 − ψ̃(x1)

−x1 − x1ψ̃′(x1)

)
.

With these coefficients, the value functions become

V (x, 1) =

{
Ã1x

β1 + Ã2x
β2 if x > x1,

K − x if x ≤ x1,
(31)

V (x, 2) =

 B̃1x
β1 + B̃2x

β2 if x > x1,

C̃1x
γ̃1 + C̃2x

γ̃2 + ψ̃(x) if x2 < x ≤ x1,
K − x if x ≤ x2.

(32)

Case 3: x1 = x2 ≤ K. In this case, the continuation region D becomes

D = {(x, i) : x > x∗}.

Therefore, for x ≥ x∗, we get

V (x, 1) = A1x
β1 +A2x

β2 ,

V (x, 2) = B1x
β1 +B2x

β2

and V (x, 1) = V (x, 2) = K − x for x ∈ [0, x∗]. By smooth pasting at x∗, we can
follow A1 = B1, A2 = B2, and therefore, V (x, 1) = V (x, 2). Put V (x) = V (x, 1),
then for x > x∗, the system (7) can be written as

µixV
′
x(x) +

1

2
σ2
i x

2V ′′xx(x) +

∫
R

[V (x+ xz)− V (x)] ν(dz)− rV (x, z) = 0

for both i = 1, 2. It is easy to check

V (x) = V (x, 1) = V (x, 2) =

{
(K−x∗)xβ

(x∗)β
if x > x∗,

K − x if x ≤ x∗,

where x∗ = Kβ
β−1 and β is the unique negative real root of

µiβ +
1

2
σ2
i β(β − 1) +

∫
R

[(1 + z)β − 1]ν(dz)− r = 0.
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3. A VERIFICATION THEOREM

In this section, we will show that the value functions derived in the previous Section
is optimal. For any v(x, i) such that v(., i) ∈ C2(R), define

Av(x, i) = xµi
∂v(x, i)

∂x
+

1

2
x2σ2

i

∂2v(x, i)

∂x2
+

∫
R

{v(x+ xz, i)− v(x, i)} ν(dz)

+λi(v(x, 3− i)− v(x, i))− rv(x, i).

Theorem 3.1. Suppose that (22) (resp. (28)) has a solution (x∗1, x
∗
2) such that

0 < x∗1 ≤ K and 0 < x∗2 ≤ K. Define

D = {(x, i)|v(x, i) > (K − x)+},
S = {(x, i)|x ≥ 0, i = 1, 2},

If we can find a function v : S → R such that

v(x, i) ∈ C2(S \ ∂D) ∩ C1(S) (33)

v(x, i) > (K − x)+ on S, (34)

Av(x, i) ≤ 0 on S \ ∂D, (35)

Av(x, i) ≤ 0 on D, (36)

Moreover, assume

τD := inf{t ≥ 0|(X(t), y(t)) /∈ D} <∞ a.s. for (x, i) ∈ D. (37)

Then
v(x, i) = V (x, i)

and
τ∗ = τD

is an optimal stopping time.

Proof. It is easy to see that v(∞, i) = 0, i = 1, 2, and

D = {(x, 1)|x ∈ (x∗1,∞)} ∪ {(x, 2)|x ∈ (x∗2,∞)}.

Let τ be any stopping time. By a smooth approximation approach for variational
inequalities in Øksendal and Sulem [16] we can assume that v(., i) ∈ C2. Then by
the Dynkin formula applied to τk := min(τ, k); k = 1, 2, · · · , we have,

E(x,i)[v(X(τk))] = v(x, i) + E(x,i)

[∫ τk

0

Av(X(τs))ds

]
.

Hence by (35) and the Fatou lemma

v(x, i) ≥ lim inf
k→∞

E(x,i)[v(X(τk))]

≥ E(x,i)[(K −X(τ))+)].

Hence
v(x, i) ≥ E(x,i)[e−rτ

∗
(K −X(τ∗)+]. (38)
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To show the optimality of τ∗, if we apply the above argument to τ = τD, then
by (36) and (37) we get equality in (38), such that

v(x, i) ≤ E[e−rτ
∗
(K −X(τ∗))+].

Combining this with (38), we have v(x, i) = E[e−rτ
∗
(K−X(τ∗))+]. This completes

the proof.
From the discussion of the previous Sections, it is easy to check that the value

functions V (x, i) satisfy all the conditions of Theorem 3.1.

4. A NUMERICAL EXAMPLE

In this Section, we present a numerical example. We assume the jump size of
stock process follows the Pareto distribution F (z) = 1 − (1 + z)−2, Λ = 1, that is

ν(dz) =
2

(1 + z)3
dz. Then the equation (13) can be rewritten as

f(β) =

[
(λ1 + r)− (µ1 +

1

2
σ2
1)β − 1

2
σ2
1β

2 + 1 +
2

β − 2

]
×

[
(λ2 + r)− (µ2 +

1

2
σ2
2)β − 1

2
σ2
2β

2 + 1 +
2

β − 2

]
− λ1λ2. (39)

Let

r = 0.25, σ1 = 15, σ2 = 16, λ1 = 50, λ2 = 150, µ1 = 30, µ2 = 50,K = 5.

After some calculations, we find the following thresholds: x∗1 = 0.0509, x∗2 =
0.0672 and the corresponding value functions:

V (x, 1) =


0.00017x−0.99371 + 4.68250x−0.01499

if x > 0.06725,
0.00762x−0.39855 + 2.20948x1.1388 − 2.49383x+ 4.97512

if 0.05098 < x ≤ 0.067,
5− x if x < 0.0509,

V (x, 2) =

{
−0.0049x−0.99371 + 4.7400x−0.01499 if x > 0.067,
5− x if x ≤ 0.067.

The numerical results are plotted in Figure 1 (a). In contrast, the value functions
with λ1 = 55, other parameters as in the example above. It can be seen from Figure
1, V (x, 2) ≥ V (x, 1).

5. CONCLUSIONS

In this paper, we derive an explicit formula for perpetual American put options
on an asset whose price is modeled by jump-diffusions with Markovian switching.
This model can be viewed as generalization of Markov-modulated GBM and jump-
diffusions without regime switching. Our method provides a sufficient condition to
find the explicit solution in this model. This techniques we use provide a way to
discussion a high order integro-differential equation that often arises in the asset
pricing theory. Although the value functions presented are still hard to find the
exact solutions, this formula lays a theoretic base to numerical approximation.
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