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Abstract: In this work, D−, G−, and A− efficiencies and the scaled
average prediction variance, IV criterion, are computed and compared for
second-order split-plot central composite design. These design optimality
criteria are evaluated across the set of reduced split-plot central composite
design models for three design variables under various ratios of the variance
components (or degrees of correlation d). It was observed that D, A, G, and
IV for these models strongly depend on the values of d; they are robust to
changes in the interaction terms and vary dramatically with the number of,
and changes in the squared terms.
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1. INTRODUCTION

Experiments are performed by researchers in virtually all fields of inquiry so as to
study and model the potential effects of several design variables on the responses of
interest. The foundation for response surface methodology (RSM) was laid by Box
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and Wilson (1951). Response surface methodology comprises a group of statistical
and mathematical techniques for empirical model building and model exploitation.
By careful design and analysis of experiments, it seeks to relate a response, or output
variable, to the levels of a number of predictors, or input variables, that affect it.
The form of such a relationship is usually unknown, but can be approximated by a
low-order polynomial such as the second-order response surface model

yu = β0 +

k∑
i=1

βixiu +

k∑
i=1

βiix
2
iu +

k−1∑
i=1

k∑
j=i+1

βijxiuxju+eu (1.1)

Where y is the measured response, the β’s are parameter coefficients, xi’s are
the input variables and e is an error term. Popular designs that utilize this mod-
el include—the central composite designs (CCD), introduced by Box and Wilson
(1951), and Box-Behnken design (BBD), introduced by Box and Behnken (1960).

The most extensive applications of RSM are in the industrial world, particularly
in situations where potential influence of several process variables on some quality
characteristic of the process is being investigated. RSM is sequential in nature and
this allows the experimenter to learn about the process or system under study as
the investigation proceeds. See, for instance, Khuri and Cornell (1996), Box and
Draper (2007), and Myers et al. (2009) for more details.

After data are generated from the experiment and a model is fit, many pa-
rameters in the fitted model are deemed insignificant. Therefore, a reduced model
retaining only the significant terms is adopted for use. Design optimality crite-
ria based on the adopted reduced model are equally if not more important than
the optimality criteria for the proposed full model (Borkowski & Valereso, 2001).
Therefore, a design should be robust over classes of reduced models; that is, the
design should maintain high optimality criteria over a wide assortment of potential
models.

Many authors (e.g., Box & Draper, 1959, 1963; Karson, Manson & Hader, 1969)
have studied the design-selection problem when the proposed approximating model
is an underparameterized approximation of the true response surface. In such cases,
use is made of a low-order polynomial when a higher-order polynomial is a better
approximating function. With regard to this design problem, some authors (e.g.,
Box & Draper, 1987; Myers & Montgomery, 1995; and, Khuri & Cornell, 1996) also
have used the integrated mean squared error (IMSE), where IMSE = V +B, and

B =
NΩ

σ2

∫
R

[E(ŷ(x)− η(x)]
2
dx (1.2)

is the systematic (squared) bias resulting from underestimation of the true response
surface with the fitted low-order model;

V =
NΩ

σ2

∫
R

V ar[(ŷ(x))]dx (1.3)

is the prediction variance, and Ω−1 =
∫
R
dx.

The research by Borkowski and Elsie (2001) addresses the problem in a different
dimension. These authors provide an evaluation of the robustness properties of
some standard response surface designs (CCD, SCD, NHD, and computer- generated
algorithmic designs) over a collection of reduced models based on D−, G−, A−, and
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IV− optimality criteria. These reduced models are formed by removing terms one
after the other from the proposed full model. They showed that design optimality
criteria can be sensitive to deviations from the full second-order response surface
model, and that the CCD is robust with respect to the set of reduced models as
well as across the four optimality criteria considered.

Angela and Yisa (2012) studied the role of several model characteristics and
center point replications on the properties of A−, D−, G−, and IV−optimal designs
for a full second-order model, and also investigate the impacts of these same designs
under various numbers of experimental runs. They showed that the pure linear
model is the best model in terms of quality of estimation and prediction, and also
that the A− and D− efficiencies for this model is insensitive to changes in number
of experimental runs, as compared to other models under consideration.

The similarity with all of the above efforts is the assumed possibility of complete
randomization of the experimental run order. That is, all the experiments con-
sidered are (assumed to be) conducted in a completely randomized (CRD) mode.
This means that all factors are independently reset with each run (see, for instance,
Ganju & Lucas 1997, 1998, 2005).

However, in most industrial experiments it becomes a challenge to adhere to the
CRD principles at all times. This is due to the fact that a large fraction of these
experiments contain two sets of factors: the hard-to-change (HTC) factors (such as
pressure, humidity, process temperature, mechanical set-ups, etc.), which are not
reset from run to run because of the time or cost involved in doing so, and the
easy-to-change (ETC) factors (like variety, processing time, etc.), whose levels are
easy to reset from run to run.

Performing CRD in the presence of HTC factors adds considerable time and
expense to the experiment. When hard-to-change factors exist in an experiment,
it is typically more cost-effective to randomize the treatment combinations in such
a manner as to minimize the number of times the levels of these (HTC) factors
are changed. In this sense, the experimenter typically will fix the level of the HTC
factor (i.e., restrict the randomization) and then run all combinations or a fraction
of all combinations of the ETC factor levels. This strategy leads to a split-plot
design where the experimental unit for the hard-to-change factors is subdivided
into experimental units for the easy-to-change factors.

For every split-plot experiment, there are two separate randomizations. The
hard-to-change factor level combinations, often called whole-plot treatments, are
randomly assigned to whole plots based on the whole plot design. Within each whole
plot, the easy-to-change factor level combinations, often called subplot treatments,
are randomly assigned to subplots with a separate randomization for each whole
plot. This leads to two error terms, one for the whole-plot treatments and one for
the subplot treatments.

Most industrial experiments follow the split-plot structure but in many cases are
incorrectly analyzed as completely randomized experiments (Jones & Christopher,
2009). In fact, recent work, most notably by Lucas and his coworkers (Ambari &
Lucas, 1994; Ganju & Lucas, 1997, 1999, 2005; Ju & Lucas, 2002). Web et al.
(2004) has demonstrated that many experiments previously thought to be com-
pletely randomized experiments also exhibit split-plot structure.

The issue of randomization restriction in response surface methods (RSM) was
first investigated by Letsinger et al. (1996). Based on simulation study, Letsinger
et al. (1996) recommended restricted maximum likelihood method (REML) for pa-
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rameter estimation as compared to ordinary least squares (OLS) method. Vining
et al. (2005) modified the standard central composite design (CCD) to accommo-
date split-plot structure and developed equivalent Cestimation split-plot designs for
response surfaces. Kowalski et al. (2006) modified a central composite design to
model the process mean and variance when there are hard Cto-change factors.

1.1. Model and Notations

We define the general form of the split-plot model as

Y = Xβ + Zγ + ε, (1.1.1)

where Y is the n× l vector of responses, X is the n×p model matrix, β is the p×1
vector of coefficients, Z is the n × b incidence matrix assigning the n observations
to the b whole plots: the (i, j)th entry of Z is equal to one if the jth observation
belongs to the ith whole plot, and zero otherwise. γ is the b × 1 vector of random
whole-plot effects, ε is the n × 1 vector of random subplot effects. It is assumed
that γ and ε each has a mean of 0 and variance σ2

δ and σ2
ε respectively, where σ2

ε

is the subplot error variance, and σ2
δ is the whole-plot error variance. It is assumed

that
E(ε) = 0 and Cov(ε) = σ2

εIn,
E(γ) = 0 and Cov(γ) = σ2

γIb,
Cov(γ, ε) = 0.

Under these assumptions, the variance-covariance matrix of the observations
Var(y) can be written as

V = σ2
εI + σ2

δZZ
′ = σ2

ε [I + dZZ ′] (1.1.2)

Where d =
σ2
δ

σ2
ε

is a measure for the extent to which observations within the same

whole plot are correlated, and ZZ ′ is a block diagonal matrix of the form

ZZ ′ =

 1n1
1′n1

· · · 0
...

. . .
...

0 · · · 1nw
1′nw

 (1.1.3)

where 1ni is a vector of ones of length ni and ni is the number of subplot runs in
the ith whole-plot. We can observe from the structure of ZZ ′ that observations in
different whole-plots are independent, while observations within a whole-plot are
correlated.

Expanding equation (1.2.1) illustrates the terms in the model matrix for second-
order designs as

E(y) = β0 +
w∑
i=1

βizi +
w−1∑
i=1

w∑
j=i+1

βijzizj +
w∑
i=1

βiiz
2
i +

k∑
i=1

θixi

+
k−1∑
i=1

k∑
j=i+1

θijxixj +
w∑
i=1

k∑
j=1

γijzixj +
k∑
i=1

θiix
2
i

(1.1.4)

From (1.1.4), z is the whole-plot factor, x is the subplot factor, the β’s are
the regression coefficients at the whole-plot level, θ’s and γ’s are the regression
coefficients at the subplot levels.
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The generalized least squares (GLS) estimate of the model coefficients is

β̂GLS = (X′V −1X)−1X′V −1y (1.1.5)

with the variance-covariance matrix as

var(β̂GLS) = (X′V −1X)−1 (1.1.6)

Equation (1.1.5) is also the maximum likelihood estimate of β under normality.
Goos and Vandebroek (2004) investigated the role of several model character-

istics on the properties of D−optimal split-plot designs. They considered three
models (pure linear model, linear model with interaction, and a full quadratic mod-
el) and computed the D−efficiency gains for each of these models in the presence
of one whole-plot and two whole-plot factors separately. The authors observed that
the gains in efficiency in the presence of two whole-plot factors are smaller due to
the more whole-plot factor levels produced by this design, which reduces the pos-
sibility to group observations and to benefit from the correlation. This means that
the higher the correlation, the larger the efficiency gains of using a split-plot design
instead of a CRD.

The current work investigates the impact of split-plot structure on the robust-
ness properties of three-factor split-plot central composite designs consisting of one
whole-plot factor and two subplot factors over a collection of reduced models based
on D−, A−, G−, and IV−optimality criteria, and for three different degrees of
correlation (d = 0.5, 1, 2).

2. DESIGN OPTIMALITY CRITERIA FOR REDUCED SP-
LIT-PLOT CCD MODELS

The desire of every experimenter is to minimize the number of experimental trials
while still being able to estimate adequately the underlying model. After consid-
ering practical constraints (e.g., design size, time and money), design optimality
criteria are often used to evaluate a proposed experimental design prior to running
it. If several alternative designs are proposed, their optimality properties can be
compared to aid in the choice of design. Design optimality criteria are primarily
concerned with “optimal properties” of the information matrix for the model matrix
X.

The four commonly-used optimality criteria are A−, D−, G−, and IV− opti-
mality criteria. Let

M(ξ) = (X ′V −1X) (2.1)

be the information matrix for a split-plot design, then
D−criterion goal → maximize |M(ξ)|, or equivalently, minimize |M−1(ξ)|,
A−criterion goal → minimize trace [M−1(ξ)],
G−criterion goal → minimize maxx?R [Nf ′(z, x)(M−1(ξ))f(z, x)],
IV−criterion goal → minimize average [Nf ′(z, x)(M−1(ξ))f(z, x)] over x ∈ R,

(2.2)

Where X is the model matrix of a split-plot CCD associated with the response
surface model given in (1.1.4) above, x is any point in the design region R, N is the
design size and f(z, x) = [f1(z, x), ..., fp(z, x)] is a vector of p real- valued functions
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based on the p model terms. A and D criteria examine the design’s estimation
quality while G and IV criteria are based on the scaled prediction variance V (z, x),
which is a function of the variance for the above fitted response model (1.2.4).

For split-plot response surface designs, the predicted value of the mean response
at any point (z, x)′ = (z1, z2, ..., zw, x1, x2, ..., xs)

′ in the experimental region R, is

Ŷ(z,x) = (z, x)′β̂ (2.3)

where the vector (z, x)′ reflects a location in the design space at which an exper-
imenter wants to predict the response and also reflects the nature of the model;
β̂ = (X ′V −1X)−1X ′V −1y is the generalized least squares estimator of β, with X
as the model matrix and y as the vector of observations.

Then we define the prediction variance at this point, (z, x)′, as

Var(Ŷ(z,x)) = f(z, x)′(X ′V −1X)−1f(z, x) (2.4)

Here, f(z, x) is the general form of the 1 × p model vector for second-order
split-plot response surface designs and is given as

f(z, x)′ = [1|z1, ..., zw|x1, ..., xs|z1z2, ..., zw−1zw|z1x1, ..., zwxs|
x1x2, ..., xs−1xs|z21 , ..., z2w|x21, ..., x2s|

] (2.5)

where z and x are the whole plot and subplot factors respectively. It is important to
note that the value of the prediction variance as given by the function (2.4) above
depends on the location at which one is predicting.

Now, we denote the “Hat” matrix of the split-plot response surface design by

H = X(X ′V −1X)−1X ′V −1. (2.6)

By post multiplying both sides of this matrix by the error matrix V of the entire
data observations, we have

HV = X(X ′V −1X)−1X ′ (2.7)

Then our computations have shown that the prediction variance at a point xj =
(z, x)j , in the design space as given in (2.4) above, is

Var
(
Ŷ(xj)

)
= x′j(X

′V −1X)−1xj = (hv)jj (2.8)

where (hv)jj is the corresponding jth diagonal element of the matrix (2.7).

Now, in split-plot response surface designs, the variance of an individual obser-
vation is the sum of the subplot and whole plot error variances, σ2

γ + σ2
e .

By scaling Equation (2.4) by σ2
γ +σ2

e/N (i.e., observation error variance divided
by the design size), we obtain the scaled prediction variance (SPV) function for
split-plot response surface designs as

v(z,x) =
Var

(
Ŷ(z,x)

)
σ2
γ + σ2

e/N
= Nf(z, x)′(X ′R−1X)−1f(z, x) (2.9)
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where R =
V

σ2
γ + σ2

e

is the correlation matrix of the responses in a split-plot design.

Where the structure of the R matrix is

R =


R1 0 . . . 0
0 R2 · · · 0
... 0

. . .
...

0 0 · · · Ra

 where Rj =



1
d

1 + d
. . .

d

1 + d
d

1 + d

. . . · · ·
...

...
. . .

d

1 + d
d

1 + d
· · ·

d

1 + d
1


(2.10)

where d =
σ2
γ

σ2
e

, and Rj denotes the correlation matrix of responses for the jth whole

plot.
The scaling by the observation error variance, (σ2

γ + σ2
e), causes the resulting

information matrix to be without units. A unitless information matrix,

M = (X ′R−1X) (2.11)

is desirable especially for design comparison purposes. While scaling by 1/N causes
the information matrix M to be reflective of the design size. Now, the ‘hat’ matrix
in terms of this observational correlation matrix R is

H = X(X ′R−1X)−1X ′R−1 (2.12)

Post multiplying both sides of this matrix by R, we obtain

HR = X(X ′R−1X)−1X ′ (2.13)

Then, our computations have shown that the scaled prediction variance at a
point xj = (z, x)j in the design space is

vxj
= Nx′j(X

′R−1X)−1xj = N(hr)jj (2.14)

where (hr)jj is the jth corresponding diagonal element of the product (HR) for the
given split-plot response surface design. The prediction variance vxj will be equal
for all observations in the same subset. The scaled prediction variance (SPV ),
as given by (2.14) above, allows the practitioner to measure the variance of the
predicted response on a per observation basis and it penalizes larger designs over
small designs. Scaling facilitates comparisons among designs of various sizes. On the
other hand, the unscaled prediction variance (UPV ) in equation (2.4) is useful to
compare designs of different sizes so as to determine if the additional runs in a larger
design are of value in substantially reducing the variance of the predicted response.
The UPV also allow for an estimate of the quality of prediction in absolute terms.

Directly associated with the prediction variance v(z,x) are the G and IV op-
timality criteria. The G− criterion seeks to minimize the maximum prediction
variance over the experimental region R. That is, a G−optimal design(ζ) is one
which min [maxx∈R v(z, x)]. G−optimal designs give the researcher an upper bound
for the prediction variance for a proposed design.
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The integrated prediction variance (IV ) criterion gives a single average measure
of the design’s prediction capability throughout the experimental region of interest.
This is obtained by integrating the prediction variance function v(z,x) over the region
R. For a split-plot central composite design, the standardized IV− criterion can
be expressed as

IV =

(
min
ζ

1

K

∫
R

v(z, x)dzdx

)
=

(
min
ζ

1

K

∫
R

f(z, x)′(X ′R−1X)−1f(z, x)dzdx

)
(2.15)

where K is the volume of the experimental region R given as K =
∫
R
dzdx.

If the experimenter’s interest is in finding a design with precise estimates of the
mean, the G− and IV− efficiency of the design are popular choices.

For each of the designs considered, robustness was quantified by calculating D−,
A−, G−, and IV−optimality measures over reduced models of the second-order
model in (1.1.4) above. These measures are

D− efficiency = 100
|M(ξ)|1/p

N
,

A− efficiency = 100
p

trace[N(M−1(ξ))]
,

G− efficiency = 100
p

Nσ̂2
max

,

IV− efficiency = Nσ2
ave, (2.16)

where N is the design size, p is the number of model parameters, σ2
ave is the av-

erage of f ′(x)(M−1(ξ))f(x) over the design region, and σ2
max is the maximum of

f ′(x)(M−1(ξ))f(x) approximated over the set of points from a 5k factorial designs
(with factor levels 0, ±1.73205, ±1), and M(ξ) is as defined in (2.1).

These design optimality measures are used to compare designs across the set of
reduced models. For the designs considered in this article, the optimality criteria
values were computed using Maple13 package.

3. MATERIALS AND METHODS

Sixty-four (64) split-plot central composite design models were considered in this
work for k = three, one whole plot factor and two subplot factors (i.e., w = 1, s = 2)
under various degrees of correlation d. These comprise one full quadratic model and
sixty-three (63) reduced models each consisting of pure linear part in combination
with second-order part. Adopting the format of Borkowski and Valeroso (2001)
for standard CCD, the 64 split-plot design models considered are given in Table 1
below. From this table, p is the number of model parameters; l, q, and c represent,
respectively, number of linear terms, quadratic terms and interaction terms appear-
ing in the model. The 1s and 0s in the L, Q and C columns indicate, respectively,
the presence or absence of that term in the reduced model.

For each of the designs considered, robustness was quantified by calculating op-
timality criteria measures over reduced models of the second-order model in (1.1.4)
above for three different degrees of correlation (i.e., d = 0.5, 1, 2).

117



Comparison of Optimality Criteria of Reduced Models for Response Surface
Designs with Restricted Randomization

Table 1
Reduced Models (k = 3, w = 1, s = 2 )

Design P L Q C (l, q, c)

1 10 (1,1,1) (1,1,1) (1,1,1) (3,3,3)
2 9 (1,1,1) (1,1,1) (1,1,0) (3,3,2)
3 9 (1,1,1) (1,1,1) (1,0,1) (3,3,2)
4 9 (1,1,1) (1,1,1) (0,1,1) (3,3,2)
5 9 (1,1,1) (1,1,0) (1,1,1) (3,2,3)
6 9 (1,1,1) (1,0,1) (1,1,1) (3,2,3)
7 9 (1,1,1) (0,1,1) (1,1,1) (3,2,3)
8 8 (1,1,1) (1,1,1) (1,0,0) (3,3,1)
9 8 (1,1,1) (1,1,1) (0,1,0) (3,3,1)
10 8 (1,1,1) (1,1,1) (0,0,1) (3,3,1)
11 8 (1,1,1) (1,1,0) (1,1,0) (3,2,2)
12 8 (1,1,1) (1,1,0) (1,0,1) (3,2,2)
13 8 (1,1,1) (1,1,0) (0,1,1) (3,2,2)
14 8 (1,1,1) (1,0,1) (1,1,0) (3,2,2)
15 8 (1,1,1) (1,0,1) (1,0,1) (3,2,2)
16 8 (1,1,1) (1,0,1) (0,1,1) (3,2,2)
17 8 (1,1,1) (0,1,1) (1,1,0) (3,2,2)
18 8 (1,1,1) (0,1,1) (1,0,1) (3,2,2)
19 8 (1,1,1) (0,1,1) (0,1,1) (3,2,2)
20 8 (1,1,1) (1,0,0) (1,1,1) (3,1,3)
21 8 (1,1,1) (0,1,0) (1,1,1) (3,1,3)
22 8 (1,1,1) (0,0,1) (1,1,1) (3,1,3)
23 7 (1,1,1) (1,1,1) (0,0,0) (3,3,0)
24 7 (1,1,1) (1,1,0) (1,0,0) (3,2,1)
25 7 (1,1,1) (1,1,0) (0,1,0) (3,2,1)
26 7 (1,1,1) (1,1,0) (0,0,1) (3,2,1)
27 7 (1,1,1) (1,0,1) (1,0,0) (3,2,1)
28 7 (1,1,1) (1,0,1) (0,1,0) (3,2,1)
29 7 (1,1,1) (1,0,1) (0,0,1) (3,2,1)
30 7 (1,1,1) (0,1,1) (1,0,0) (3,2,1)
31 7 (1,1,1) (0,1,1) (0,1,0) (3,2,1)
32 7 (1,1,1) (0,1,1) (0,0,1) (3,2,1)
33 7 (1,1,1) (1,0,0) (1,1,0) (3,1,2)
34 7 (1,1,1) (1,0,0) (1,0,1) (3,1,2)
35 7 (1,1,1) (1,0,0) (0,1,1) (3,1,2)
36 7 (1,1,1) (0,1,0) (1,1,0) (3,1,2)
37 7 (1,1,1) (0,1,0) (1,0,1) (3,1,2)
38 7 (1,1,1) (0,1,0) (0,1,1) (3,1,2)
39 7 (1,1,1) (0,0,1) (1,1,0) (3,1,2)
40 7 (1,1,1) (0,0,1) (1,0,1) (3,1,2)
41 7 (1,1,1) (0,0,1) (0,1,1) (3,1,2)
42 7 (1,1,1) (0,0,0) (1,1,1) (3,0,3)

To be continued
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Continued
Design P L Q C (l, q, c)
43 6 (1,1,1) (1,1,0) (0,0,0) (3,2,0)
44 6 (1,1,1) (1,0,1) (0,0,0) (3,2,0)
45 6 (1,1,1) (0,1,1) (0,0,0) (3,2,0)
46 6 (1,1,1) (1,0,0) (1,0,0) (3,1,1)
47 6 (1,1,1) (1,0,0) (0,1,0) (3,1,1)
48 6 (1,1,1) (1,0,0) (0,0,0) (3,1,1)
49 6 (1,1,1) (0,1,0) (1,0,0) (3,1,1)
50 6 (1,1,1) (0,1,0) (0,1,0) (3,1,1)
51 6 (1,1,1) (0,1,0) (0,0,1) (3,1,1)
52 6 (1,1,1) (0,0,1) (1,0,0) (3,1,1)
53 6 (1,1,1) (0,0,1) (0,1,0) (3,1,1)
54 6 (1,1,1) (0,0,1) (0,0,1) (3,1,1)
55 6 (1,1,1) (0,0,0) (1,1,0) (3,0,2)
56 6 (1,1,1) (0,0,0) (1,0,1) (3,0,2)
57 6 (1,1,1) (0,0,0) (0,1,1) (3,0,2)
58 5 (1,1,1) (1,0,0) (0,0,0) (3,1,0)
59 5 (1,1,1) (0,1,0) (0,0,0) (3,1,0)
60 5 (1,1,1) (0,0,1) (0,0,0) (3,1,0)
61 5 (1,1,1) (0,0,0) (1,0,0) (3,0,1)
62 5 (1,1,1) (0,0,0) (0,1,0) (3,0,1)
63 5 (1,1,1) (0,0,0) (0,0,1) (3,0,1)
64 4 (1,1,1) (0,0,0) (0,0,0) (3,0,0)

Note: L = (z1, x1, x2), Q = (z21 , x
2
1, x

2
2), C = (z1x1, z1x2, x1x2).

4. DESIGN COMPARISONS FOR D, A, G, AND IV

In this section, D, A, G, and IV are compared for sets of reduced models for various
degrees of correlation (i.e., d = 0.5, 1, 2). It is important to note that large D−,
A−, and G−efficiency and small IV−criterion measures are desirable. Figure 1,
(a), (b), (c), and (d); Figure 2, (a), (b), (c), and (d), and Figure 3, (a), (b), (c), and
(d) shows, respectively, plots of D, A, G, and IV for the three-factor 24 point, one
whole plot and two subplot (four center-point) split-plot CCD against the number
of model parameters, for d = 0.5, d = 1, and d = 2. The plotting symbol is q, the
number of x2i terms in the reduced model.

The following patterns exist and the first five are common for the three scenarios
(i.e., for d = 0.5, d = 1, and d = 2).

1. For p−parameter models containing any, or a combination of any of the pure
quadratic terms (z2i and x2i ), D, A, G, and IV are invariant to removal of any of the
interaction terms (zixi and xixj). That is, D, A, G, and IV are robust to changes
in the interaction terms.

2. For p−parameter models containing combination of pure whole plot and
subplot quadratics, D, A, G, and IV vary dramatically with removal of pure whole
plot quadratic term, while the effect on the optimality measures due to removal
of a pure subplot quadratics is constant for models containing the same whole plot
quadratic term. That is, D, A, G, and IV are robust to changes in the pure subplot
quadratic terms.
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3. For p−parameter models containing only the pure subplot quadratic terms,
D, A, G, and IV are invariant to changes in these terms.

4. D, A, G, and IV are unaffected by the presence or absence of cross-product
terms involving the variable whose squared term is removed from the model.

5. D, A, G, and IV are less variable for all models having the same number, q,
of squared terms.

6. For our first scenario (d = 0.5), removing a squared term from a model has
varying effects on each of these optimality measures as can be seen directly from
Figure (1) a-d. However, for D, distinct groups are formed by the values of q with D
increasing dramatically as q increases, while A increases as q decreases. The values
of q also formed diagonal D bands as shown in Figure 1 (a). For this scenario, D
for the full model is the smallest, A for the pure linear model is the largest, and
IV for the full model is the largest (note that smaller IV is better), relative to the
set of other reduced models. There is a large decrease in D when a square term
is removed from a model; a large increase in A is also observed when a squared
term is removed from a model. Here, the pure linear model is the most A−, and
IV−efficient.

7. For our second scenario (d = 1), removing a squared term from a model has
varying effects on each of these optimality measures except A, where distinct groups
are formed by the values of q. The values of q formed diagonal D and G bands as
can be seen directly from Figure 2 (a) and (c) below. There is a large increase in A
when a squared term is removed, as can be seen directly from Figure 2 (b). Also,
the values of q formed diagonal G bands as shown in Figure 2 (c). For this scenario,
the pure linear model is the most A− and IV−efficient while the full model is the
most G−efficient and also the worst IV−efficient.

8. For our third scenario (d = 2), removing a squared term from a model has
varying effects on each of these optimality measures as can be seen directly from
Figure 3 (a)-(d). However, distinct groups are formed for D by the values of q while
these values of q formed diagonal G bands as shown in Figure 3 (c). There is a
large change in each of these optimality measures when a squared term is removed
from a model. Here, the pure linear model is the most IV−efficient.

9. For all the three scenarios, IV for the full model tends to be larger relative
to the set of reduced models. While that of the pure linear model (p = 4) is smaller
relative to the set of other models and is therefore the most preferred.

Next we compare D, A, G, and IV for sets of reduced models for the three
scenarios combined. Figure 4 (a), (b), (c), and (d) shows plots of D, A, G, and IV
for the three-factor 24 point, one whole plot and two subplot (four center-point)
split-plot CCD against the number of model parameters, for the combined three
scenarios (i.e., d = 0.5, 1, 2). From these plots, we observe that

1. D, A, G, and IV measures for these designs depend strongly on the ratio of
the two variance components (i.e., on the degree of correlation d).

2. The three-factor 24 point, one whole plot and two subplot split-plot CCD
with four replicates of center point and equal whole plot and subplot error variances
(i.e., d = 1) is the most D− and A−efficient.

3. The pure linear model is the most A−efficient model, while the full model is
the worst IV−efficient model.
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(a) (b)

(c) (d)

Figure 1
Plots of Reduced Model Efficiencies for the Three-Factor 24
Points Split-Plot CCD. The CCD Consists of 4
Center-Points. Plots (a), (b), (c), and (d) Contain the D, A,
G, and IV Efficiencies for the CCD When d = 0.5
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(a) (b)

(c) (d)

Figure 2
Plots of Reduced Model Efficiencies for the Three-Factor 24
Points Split-Plot CCD. The CCD Consists of 4
Center-Points. Plots (a), (b), (c), and (d) Contain the D, A,
G, and IV Efficiencies for the CCD When d = 1
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(a) (b)

(c) (d)

Figure 3
Plots of Reduced Model Efficiencies for the Three-Factor 24
Points Split-Plot CCD. The CCD Consists of 4
Center-Points. Plots (a), (b), (c), and (d) Contain the D, A,
G, and IV Efficiencies for the CCD When d = 2
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(a) (b)

(c) (d)(c) (d)

Figure 4
Plots of Reduced Model Efficiencies for the Three-Factor 24
Points Split-Plot CCD. The CCD Consists of 4
Center-Points. Plots (a), (b), (c), and (d) Contain the D, A,
G, and IV Efficiencies for the CCD for the Three Scenarios
Combined (i.e., d = 0.5, 1, and 2)
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5. CONCLUSION

From the second-order reduced split-plot CCD models considered in this work, we
have shown that D, A, G, and IV are more sensitive to changes in the pure whole
plot squared terms and also to changes in the number of squared terms (q) in the
model than to changes in interaction terms. These criteria are robust to changes
in the interaction terms and vary dramatically with changes in the pure whole plot
squared terms.

D, A, G, and IV are unaffected by the presence or absence of cross-product
terms involving the variable whose squared term is removed from the model. The
IV for the full model tends to be larger relative to the set of reduced models,
while that of the pure linear model (p = 4) is smaller relative to the set of other
models and therefore the most preferred. In each of the three scenarios, the pure
linear model is the most IV−efficient while the full quadratic model is the worst
IV−efficient.

In the combined plots in Figure 4, the most D− and A−efficient design is the
one with equal whole plot and subplot error variances (i.e., d = 1).

In general we see that D, A, G, and IV are not robust across reduced mod-
els. They vary dramatically when a whole plot squared term is removed, and are
insensitive to changes in the interaction terms. Most interestingly, these criteria
measures depend strongly on the ratio of the two variance components d as can be
directly seen in Figure 4.

Therefore, when a researcher is faced with a decision of which response surface
designs to choose, when some variables are hard to change and some are easy to
change, and based on one or more optimality criteria, it is important that these
criteria be first determined over a subset of restricted models.

Each of the sixty-four models considered in this work contains full pure linear
part and so the effects of linear terms are not investigated.
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