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Abstract
In this paper, we have investigated the synchronization behaviour of two identical nonlinear dynamical
systems of a rotating ellipsoidal satellite in elliptic orbit under the solar radiation pressure evolving from
different initial conditions using the active control technique based on the Lyapunov stability theory and the
Routh-Hurwitz criteria. The designed controller, with ourown choice of the coefficient matrix of the error
dynamics, are found to be effective in the stabilization of the error states at the origin, thereby, achieving
synchronization between the states variables of two dynamical systems under consideration. Numerical
simulations are presented to illustrate the effectiveness of the proposed control techniques usingmathemat-
ica.
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1. INTRODUCTION

After the pioneering work on chaos control by Ottet al [1] and synchronization of chaotic systems by
Pecora and Carroll [2], chaos control and synchronization has received increasing attention [3–7] and has
become a very active topic in nonlinear science since last couple of years. Over the last decade various
effective methods have been proposed and utilized [8–20] to achieve the control and stabilization of chaotic
systems like laser, power electronics etc. The idea of synchronization of two identical chaotic systems that
start from different initial conditions consists of linking the trajectory of one system to the same values in
the other so that they remain in step with each other, throughthe transmission of a signal.

The control of physical systems is an important subject in engineering and sciences, thus, in some
applications, chaos can be useful while in others it might bedetrimental for example chaos in power systems
[21–23] and in mechanical systems is objectionable. On the other hand, the idea of chaos synchronization
was utilized to build communication systems to ensure the security of information transmitted [24–32].
Several attempts have been made to control and synchronize chaotic systems [2, 16, 18, and 32]. Some of
these methods need several controllers to realize synchronization. The OGY method, for instance, have been
successfully applied to many chaotic systems like the periodically driven pendulum [33] and parametric
pendulum [34]. Also, the Pyragas time-delayed auto-synchronization method [35, 36] has been shown
to be an efficient method that has been realized experimentally in electronic chaos oscillators [37], lasers
[38] and chemical systems [39]. In addition, the delayed feedback control, addition of periodic force and
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adaptive control algorithm has been utilized to control chaos in a symmetric gyro with linear-pluscubic
damping [40].

In particular, backstepping design and active control havebeen recognised as two powerful design
methods to control and synchronize chaos. It has been reported [41–43] that backstepping design can
guarantee global stability, tracking and transient performance for a broad class of strict-feedback nonlinear
systems. In recent time, it has been employed for controlling, tracking and synchronizing many chaotic
systems [44–48] as well as hyperchaotic systems [41]. According to ref [45], some of the advantages in
the method include applicability to a variety of chaotic systems whether they contain external excitation or
not; needs only one controller to realize synchronization between chaotic systems and finally there are no
derivatives in the controller. Zhang [41] states that the controller is singularity free from the nonlinear term
of quadratic type, gives flexibility to construct a control law which can be extended to higher dimensional
hyperchaotic systems and the closed-loop system is globally stable, while ref [49] adds that it requires less
control effort in comparison with the differential geometric method.

The aim of this article is to use the active control techniquebased on the Lyapunov stability theory and
the Routh-Hurwitz criteria to study the synchronization behavior of the two identical planar oscillation of an
ellipsoidal satellite in elliptic orbit under solar radiation pressure evolving from different initial conditions.

2. EQUATION OF MOTION OF A SATELLITE IN AN ELLIPTIC
ORBIT

Elliptically orbiting planar oscillations of satellites in the solar system make an interesting study, and sig-
nificant contributions to this end can be found in the works [50-58], all of whom have studied the influence
of certain perturbative forces, such as solar radiation pressure, tidal force, and air resistance. In the present
work, we consider the planar oscillation of a satellite in elliptic orbit with the spin axis fixed perpendicular
to the orbital plane. Let the long axis of the satellite makesan anglexwith a reference axis that is fixed in
inertial space, the long axis of the satellite makes an angleφ with satellites planet centre line and the satel-
lite to be a triaxial ellipsoid with principal moments of inertia A < B < C, whereC is the moment about
the spin axis. The orbit is taken to be a fixed ellipse with semimajor axisa, eccentricitye, true anomaly
ν, ω2

0 = 3(B− A)/Cand instantaneous radiusr. The equation of motion of satellite planar oscillation in an
elliptic orbit around the earth under solar radiation pressure, is

d2x
dt2
+
ω2

0µ

2r3
sin 2φ + α

(a
r

)6 φ̇

n
= 0. (2.1)

Using the relationsh2 = µl, x = ν + φ, r2ν̇ = h, l = a(1− e2)andl = r (1+ ecosν), the equation (2.1) may
be written as

d2x
dt2
= −
ω2

0µ

2l3
(1+ ecosν)3 sin 2(x− ν) −

α

n
(1+ ecosν)6

(

1− e2
)6

(ẋ− ν̇). (2.2)

3. SYNCHRONIZATION VIA ACTIVE CONTROL

For a system of two coupled chaotic oscillators, the master system (ẋ = f (x, y)) and the slave system (˙y =
g(x, y)), wherex(t) andy(t)are the phase space (state variables), andf (x, y) andg(x, y) are the corresponding
nonlinear functions, synchronization in a direct sense implies |x(t) − y(t)| → 0 as t → ∞. When this
occurs the coupled systems are said to be completely synchronized. Chaos synchronization is related to the
observer problem in control theory [59]. The problem may be treated as the design of control laws for full
chaotic observer (the slave system) using the known information of the master system so as to ensure that
the controlled receiver synchronizes with the master system. Hence, the slave chaotic system completely
traces the dynamics of the master in the course of time.
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The system defined by (2.2) together withr2ν̇ = h, can be written as a system of three first order
differential equations when the three variables are introduced:

x = x1, ẋ1 = x2, ν = x3.

The new system is:
ẋ1 = x2,

ẋ2 = −
ω2

0µ

2l3
(1+ ecosx3)3 sin 2(x1 − x3) +

α (1+ ecosx3)6

nl2
(

1− e2
)6

{

h (1+ ecosx3)2 − l2x2

}

,

ẋ3 =
h
l2

(1+ ecosx3)2. (3.1)

Let us define another system as follows:
ẏ1 = y2 + u1(t),

ẏ2 = −
ω2

0µ

2l3
(1+ ecosy3)3 sin 2(y1 − y3) +

α (1+ ecosy3)6

nl2
(

1− e2
)6

{

h (1+ ecosy3)2
−l2y2

}

+ u2(t),

ẏ3 =
h
l2

(1+ ecosy3)2 + u3(t). (3.2)

where (3.1) and (3.2) are called the master and the slave systems respectively, and in the slave systemui(t)
for i = 1, 2, 3, are control functions to be determined. Lete1 = y1 − x1, e2 = y2 − x2 ande3 = y3 − x3 be the
synchronization errors such that in synchronization statelim

t→∞
ei(t) → 0 for i = 1, 2, 3 from reference [60].

From (3.1) and (3.2), we obtain the error dynamics

ė1 = e2 + u1(t),

ė2 =
ω2

0µ

2l3
{

(1+ ecosx3)3 sin 2(x1 − x3) − (1+ ecosy3)3 sin 2(y1 − y3)
}

+
αh

nl2
(

1− e2
)6

{

(1+ ecosy3)8 − (1+ ecosx3)8
}

+
α

n
(

1− e2
)6

{

x2 (1+ ecosx3)6−y2 (1+ ecosy3)6
}

+ u2(t),

ė3 =
h
l2
{

(1+ ecosy3)2 − (1+ ecosx3)2
}

+ u3(t). (3.3)

The error system (3.3) to be controlled is a linear system with control inputs. Therefore, from reference [61],
the control functions can be redefined in order to eliminate the terms in (3.3) which cannot be expressed as
linear terms ine1, e2 ande3 as follows:

u1(t) = v1(t)

u2(t) = −
ω2

0µ

2l3
{

(1+ ecosx3)3 sin 2(x1 − x3) − (1+ ecosy3)3 sin 2(y1 − y3)
}

−
αh

nl2
(

1− e2
)6

{

(1+ ecosy3)8 − (1+ ecosx3)8
}

−
α

n
(

1− e2
)6

{

x2 (1+ ecosx3)6−y2 (1+ ecosy3)6
}

+ v2(t),

u3(t) = −
h
l2
{

(1+ ecosy3)2
− (1+ ecosx3)2

}

+ v3(t). (3.4)
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Therefore the linear error system can be written as follows:

ė1(t) = e2(t) + v1(t),

ė2(t) = v2(t),

ė3(t) = v3(t). (3.5)

The error system (3.5) to be controlled is a linear system with control inputsv1, v2 andv3 as the function of
the error statese1, e2 ande3. As stated, as long as lim

t→∞
ei(t)→ 0 for i = 1, 2, 3, synchronization between the

master (driver) and slave (response) system is realized, that is, the system represented by (3.1) and (3.2) are
synchronized under active control. According to active control method, the controllersv1, v2 andv3 can be
written as:

(v1 v2 v3)T = A (e1 e2 e3)T (3.6)

WhereAis a 3× 3 constant matrix. As per the Lyapunov stability theory and the Routh-Hurwitz criteria,
in order to make the close loop system (3.5) stable, the proper choice of the elements ofA is such that the
system (3.5) must have all eigen values with the negative real parts.

Let A =


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
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, bring (3.5) into (3.6), we may obtain
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













.

Now the slave system (3.2) can be defined as

ẏ1 = x1 + 2y2 − y1 − x2,

ẏ2 = −
ω2

0µ

2l3
(1+ ecosx3)3 sin 2(x1 − x3) +

α (1+ ecosx3)6

nl2
(

1− e2
)6

{

h (1+ ecosx3)2−l2x2

}

+ x2 − y2,

ẏ3 =
h
l2

(1+ ecosx3)2 + x3 − y3. (3.7)

4. NUMERICAL SIMULATION

For the parameters involved in system under investigation,e= 0.15,h = 0.1, l = 0.7,µ = 0.02,α = 0.0001,
n = 0.1 andω0 = 0.3 and the initial conditions for master and slave systems [x1(0), x2(0), x3(0)] = [0, 0.1, 0]
and
[

y1(0), y2(0), y3(0)
]

= [0.1, 0.2, 0.1] respectively, the system has been simulated usingmathematica. The
obtained results show that the system under consideration achieved synchronization. Phase plots of (3.1)
and (3.2) (Figure 1), time series analysis of (3.1) and (3.2)(Figure 2) and time series analysis of errors
(Figure 3) are the witness of achieving synchronization between master and slave system. Further, it also
has been confirmed by the convergence of the synchronizationquality defined by

e(t) =
√

e2
1(t) + e2

2(t) + e2
3(t) (4.1)
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Figure 1 Figure 2

Phose Plot of Mater & Slave System Time Series of Mater & System

Figure 3 Figure 4

Time Series of Synchronization Errors Error Propagation in Synchronization

Figure (4) confirms the convergence of the synchronization quality defined by (4.1).

5. CONCLUSION

In this paper, we have investigated the chaos synchronization behaviour of the two identical planar oscilla-
tion of an ellipsoidal satellite in elliptic orbit under solar radiation pressure, evolving from different initial
conditions via the active control technique based on the Lyapunov stability theory and the Routh-Hurwitz
criteria. The results obtained were validated by numericalsimulations usingmathematicafor the proposed
technique.

REFERENCES

[1] E. Ott, C. Grebogi & J. A. Yorke (1990). Controlling Chaos. Phys Rev Lett, 64, 1196-1199.

[2] L. M. Pecora & T. L. Carroll (1990). Synchronization in Chaotic Systems.Phys Rev. Lett, 64, 821-824.

[3] T. Kapitaniak (1996).Controlling Chaos - Theoretical. Practical Methods in Non-linear Dynamics.
London: Academic Press.

[4] Chen G. & Dong X. (1998).From Chaos to Order: Methodologies, Perspectives and Applications.
Singapore: World Scientific.

[5] A. S. Pikovsky, M. G. Rosenblum & J. Kurths (2001).Synchronization - A Unified Approach to Non-
linear Science.Cambridge: Cambridge University Press.

20



Mohammad Shahzad/Progress in Applied Mathematics Vol.3 No.2, 2012

[6] M. Lakshmanan & K. Murali (1996).Chaos in Nonlinear Oscillators: Controlling and Synchroniza-
tion. Singapore: World Scientific.

[7] A. L. Fradkov & A. Yu. Pogromsky (1996).Introduction to Control of Oscillations and Chaos. Singa-
pore: World Scientific.

[8] X. Yu & Song Y. (2001). Chaos Synchronization via Controlling Partial State of Chaotic Systems.Int.
J. Bifurcation& Chaos, 11,1737-1741.

[9] C. Wang & S. S. Ge. (2001). Adaptive Synchronization of Uncertain Chaotic Systems via Backstep-
ping Design.Chaos Solitons and Fractals, 212,1199-1206.

[10] M. C. Ho & Y. C. Hung (2002). Synchronization of Two Different Systems by Using Generalised
Active Control.Phys Lett. A., 301,424-428.

[11] M. T. Yassen (2005). Chaos Synchronization Between TwoDifferent Chaotic Systems Using Active
Control.Chaos Solitons and Fractals, 23,131.

[12] Y. Wang, Z. Guan & H. O. Wang (2003). Feedback and Adaptive Control for the Synchronization of
Chen System via a Single Variable.Phys. Lett. A., 312,34-40.

[13] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, H. D. I. Abarbanel (1995). Generalized Synchronization
of Chaos in Directionally Coupled Systems.Phys. Rev. E., 51, 980-994.

[14] A. A. Emadzadeh & M. Haeri (2005). Anti-Synchronization of Two Different Chaotic Systems Via
Active Control.Trans on Engg., Comp and Tech., 6,62-65.

[15] Y. Lei, W. Xu, H. Zheng (2005). Synchronization of Two Chaotic Nonlinear Gyros Using Active
Control.Phys. Lett. A., 343, 153-158.

[16] E. W. Bai, K. E. Lonngren (1997). Synchronization of TwoLorenz Systems Using Active Control.
Chaos Solitons and Fractals, 8,51-58.

[17] U. E. Vincent & J. A. Laoye (2007). Synchronization and Control of Directed Transport in Chaotic
Ratchets via Active Control.Phys. Lett. A., 363,91-95.

[18] E. W. Bai, K. E. Lonngren (2000). Sequential Synchronization of Two Lorenz Systems Using Active
Control.Chaos Solitons and Fractals, 11,1041-1044.

[19] U. E. Vincent (2005). Synchronization of Rikitake Chaotic Attractor Using Active Control.Phys Lett
A., 343, 133.

[20] S. Chen & J. Lu (2002). Synchronization of an Uncertain Unified System via Adaptive Control.Chaos
Solitons and Fractals, 14,643-647.

[21] H. O. Wang & E. H. Abed (1993). Control of Nonlinear Phenomena at the Inception of Voltage Col-
lapse.Proc. 1993 American control conference, San Francisco Jun,2071 -2075.

[22] E. H. Abed & P. P. Varaiya (1989). Nonlinear Oscillations in Power Systems.Int. J. of Electric Power
and Energy System, 6,37-43.

[23] E. H. Abed & J. H. Fu (1986). Local Feedback Stabilization and Bifurcation Control, I. Hopf Bifur-
cation.Systems and Control Letters, 7,11-17.

[24] L. Rosier, G. Millerioux, G. Bloch (2006). Chaos Synchronization for a Class of Discrete Dynamical
Systems on the N-dimensional Torus.Systems and Control Letters, 55,223-231.

[25] T. Yang (2004). A Survey of Chaotic Secure Communication Systems.Int. J. Comp. Cognition, 2,
81-130.

[26] L. Lu, X. Wu & J. LÄu(2002). Synchronization of a Unified Chaotic System and the Application in
Secure Communication.Phys. Lett. A., 305,365-370.

[27] G. A. Lvarez, F. Montoya, M. Romera, G. Pastor (2004). Crypt Analyzing a Discrete-time Chaos
Synchronization Secure Communication System.Chaos Solitons and Fractals, 21,689-694.

[28] G. A. lvarez, F. Montoya, M. Romera, G. Pastor (1999). Chaotic Cryptosystems. In Larry D. Sanson,

21



Mohammad Shahzad/Progress in Applied Mathematics Vol.3 No.2, 2012

(Eds.), 33rd Annual 1999 International Carnahan Conference on Security Technology.IEEE, 332-338.

[29] S. Boccaletti, A. Farini, F. T. Arecchi (1997). Adaptive Synchronization of Chaos for Secure Commu-
nication.Phys. Rev. E., 55(5), 4979-4981.

[30] S. Hayes, C. Grebogi, E. Ott, A. Mark (1994). Experimental Control of Chaos for Communication.
Phys. Rev. Lett., 73, 1781-1784.

[31] K. M. Cuomo & A. V. Oppenheim (1993). Circuit Implementation of Synchronized Chaos with Ap-
plications to Communications.Phys. Rev. Lett., 71,65-68.

[32] K. M. Cuomo, A. V. Oppenheim, S. H. Strogatz (1993). Synchronization of Lorenz-based Chaotic
Circuits with Applications to Communications.IEEE Trans. Circuits Syst., 40, 626-633.

[33] G. L. Baker (1995). Control of the Chaotic Driven Pendulum.Am. J. Phys., 63,832-838.

[34] J. Starrett, & R. Tagg (1995). Control of a Chaotic Parametrically Driven Pendulum.Phys. Rev. Lett.,
74,1974-1977.

[35] K. Pyragas (1992). Continuous Control of Chaos by Self-controlling Feedback.Phys. Lett. A., 170,
421- 428.

[36] K. Pyragas (2001). Control of Chaos Via an Unstable Delayed Feedback Controller.Phys. Rev. Lett.,
86,2265-2268.

[37] K. Pyragas & A. Tamasiavicius (1993). Experimental Control of Chaos by Delayed Self-controlling
Feedback.Phys. Lett A., 180, 99-102.

[38] B. Bielawski, D. Derozier, P. Glorieux (1994). Controlling Unstable Periodic Orbits by a Delayed
Continuous Feedback.Phys. Rev. E.,49, 971-974.

[39] P. Parmanada, R. Madrigal, M. Rivera (1999). Stabilization of Unstable Steady States and Periodic
Orbits in an Electrochemical System Using Delayed-feedback Control.Phys. Rev. E., 59, 5266.

[40] H. K. Chen (2002). Chaos and Chaos Synchronization of a Symmetric Gyro with Linear-plus-cubic
Damping.J. Sound Vib., 255(4), 719-740.

[41] H. Zhang, X. Ma, M. Li, J. Zou (2005). Controlling and Tracking Hyperchaotic Rossler System Via
Active Backstepping Design.Chaos Solitons and Fractals, 26, 353-361.

[42] P. V. Kokotovic (1992). The Joy of Feedback: Nonlinear and Adaptive.IEEE Control Syst. Mag., 6,
7-17.

[43] M. Krstic, I. Kanellakopoulus, P. Kokotovic (1995).Nonlinear and Adaptive Control Design.New
York: John Wiley.

[44] A. M. Harb (2004). Nonlinear Chaos Control in a Permanent Magnet Reluctance Machine.Chaos
Solitons and Fractals, 19, 1217-1224.

[45] X. Tan, J. Zhang, Y. Yang (2003). Synchronizing ChaoticSystems Using Backstepping Design.Chaos
Solitons and Fractals, 16,37-45.

[46] A. M. Harb, B. A. Harb (2004). Chaos Control of Third-order Phase-locked Loops Using Backstep-
ping Nonlinear Controller.Chaos Solitons and Fractals, 20(4), 719-723.

[47] J. A. Laoye, U. E. Vincent, S. O. Kareem (2009). Chaos Control of 4-D Chaotic System Using Recur-
sive Backstepping Nonlinear Controller.Chaos, Solitons and Fractals, 39(1), 356-362.

[48] U. E. Vincent, A. N. Njah, J. A. Laoye (2007). Controlling Chaotic Motion and Deterministic Directed
Transport in Chaotic Ratchets Using Backstepping Nonlinear Controller.Physica D, 231, 130.

[49] S. Mascolo ( ). Backstepping Design for Controlling Lorenz Chaos, Proceedings of the 36th IEEE
CDC San Diego. CA 1500-1501.

[50] V. V. Beletskii (1966). Motion of an Artificial Satellite about Its Center of Mass (Jerusalem: Israel
Program Sci. Transl.).

[51] V. V. Beletskii, M. L. Pivovarov, E. L. Starostin (1996). Regular and Chaotic Motions in Applied

22



Mohammad Shahzad/Progress in Applied Mathematics Vol.3 No.2, 2012

Dynamics of a Rigid BodyChaos, 6, 155-166.

[52] R. B. Singh, V. G. Demin (1972). About the Motion of a Heavy Flexible String Attached to the Satellite
in the Central Field of AttractionCelest. Mech.& Dyn. Astron., 6(3), 268-277

[53] C. Soto-Trevino & T. J. Kaper (1996). Higher-order Melnikov Theory for Adiabatic Systems.J. Math.
Phys., 37,6220-6249.

[54] L. S. Wang, P. S. Krishnaprasad, J. H. Maddocks (1991). Hamiltonian Dynamics of a Rigid Body in a
Central Gravitational Field.Celest. Mech.& Dyn. Astron., 50(4), 349-386.

[55] J. Wisdom (1987). Rotational Dynamics of Irregularly Shaped Natural Satellites.A .J., 94, 1350-60.

[56] J. Wisdom, S. J. Peale, F. Mignard (1984). The Chaotic Rotation of HyperionIcarus, 58,137-152

[57] P. Goldreich & S. Peale (1996). Spin-orbit Coupling in the Solar System.A. J., 71, 425-438

[58] A. Khan, R. Sharma, L. M. Saha (1998). Chaotic Motion of an Ellipsoidal Satellite I.Astron. J., 116,
2058-66.

[59] H. Nimeijer, M. Y. Mareels Ivan(1997). An Observer Looks at Synchronization.Circ. Syst.(IEEE
Trans.),144, 882-890.

[60] L. Zengrong ( ). Several Academic Problems about Synchronization.Science Forum Ziran Zazhi,
26(5).

[61] L. Youming, X. Wei, X. Wenxian (2007). Synchronizationof Two Chaotic Four-dimensional Systems
Using Active Control.Chaos Solitons and Fractals, 32, 1823-1829.

23


