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Abstract

In this paper, we have investigated the synchronizatioratielr of two identical nonlinear dynamical
systems of a rotating ellipsoidal satellite in elliptic @nbnder the solar radiation pressure evolving from
different initial conditions using the active control techr@dpased on the Lyapunov stability theory and the
Routh-Hurwitz criteria. The designed controller, with awn choice of the cdicient matrix of the error
dynamics, are found to befective in the stabilization of the error states at the oritfiereby, achieving
synchronization between the states variables of two dycasiystems under consideration. Numerical
simulations are presented to illustrate tifieetiveness of the proposed control techniques usiathemat-
ica.
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1. INTRODUCTION

After the pioneering work on chaos control by @ttal [1] and synchronization of chaotic systems by
Pecora and Carroll [2], chaos control and synchronizatemrieceived increasing attention [3—7] and has
become a very active topic in nonlinear science since lagplecof years. Over the last decade various
effective methods have been proposed and utilized [8—20] tieaethe control and stabilization of chaotic
systems like laser, power electronics etc. The idea of sypmihation of two identical chaotic systems that
start from diferent initial conditions consists of linking the trajegtaf one system to the same values in
the other so that they remain in step with each other, throlugkransmission of a signal.

The control of physical systems is an important subject igireering and sciences, thus, in some
applications, chaos can be useful while in others it miglddtemental for example chaos in power systems
[21-23] and in mechanical systems is objectionable. On therdand, the idea of chaos synchronization
was utilized to build communication systems to ensure tleirdy of information transmitted [24—-32].
Several attempts have been made to control and synchrdmmgic systems [2, 16, 18, and 32]. Some of
these methods need several controllers to realize syniatam. The OGY method, for instance, have been
successfully applied to many chaotic systems like the paradly driven pendulum [33] and parametric
pendulum [34]. Also, the Pyragas time-delayed auto-syswiaation method [35, 36] has been shown
to be an @icient method that has been realized experimentally in relBict chaos oscillators [37], lasers
[38] and chemical systems [39]. In addition, the delayedf@ek control, addition of periodic force and
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adaptive control algorithm has been utilized to controlashan a symmetric gyro with linear-pluscubic
damping [40].

In particular, backstepping design and active control Hasen recognised as two powerful design
methods to control and synchronize chaos. It has been szbftil—43] that backstepping design can
guarantee global stability, tracking and transient pentomce for a broad class of strict-feedback nonlinear
systems. In recent time, it has been employed for contmlliracking and synchronizing many chaotic
systems [44—48] as well as hyperchaotic systems [41]. Atiegrto ref [45], some of the advantages in
the method include applicability to a variety of chaoticteyss whether they contain external excitation or
not; needs only one controller to realize synchronizatietween chaotic systems and finally there are no
derivatives in the controller. Zhang [41] states that thetcgler is singularity free from the nonlinear term
of quadratic type, gives flexibility to construct a contrai which can be extended to higher dimensional
hyperchaotic systems and the closed-loop system is glostalble, while ref [49] adds that it requires less
control dfort in comparison with the dierential geometric method.

The aim of this article is to use the active control techniased on the Lyapunov stability theory and
the Routh-Hurwitz criteria to study the synchronizatioh&@or of the two identical planar oscillation of an
ellipsoidal satellite in elliptic orbit under solar rad@t pressure evolving from fierent initial conditions.

2. EQUATION OF MOTION OF A SATELLITEINANELLIPTIC
ORBIT

Elliptically orbiting planar oscillations of satellites the solar system make an interesting study, and sig-
nificant contributions to this end can be found in the worlG ], all of whom have studied the influence
of certain perturbative forces, such as solar radiatioagune, tidal force, and air resistance. In the present
work, we consider the planar oscillation of a satellite iip&k orbit with the spin axis fixed perpendicular
to the orbital plane. Let the long axis of the satellite makesnglexwith a reference axis that is fixed in
inertial space, the long axis of the satellite makes an apgléh satellites planet centre line and the satel-
lite to be a triaxial ellipsoid with principal moments of i@ A < B < C, whereC is the moment about
the spin axis. The orbit is taken to be a fixed ellipse with semajor axisa, eccentricitye, true anomaly

v, wg = 3(B - A)/Cand instantaneous radius The equation of motion of satellite planar oscillation m a
elliptic orbit around the earth under solar radiation puessis

d?x Wi a\é ¢
W+F8In2¢+a(F) H—O (21)
Using the relationis? = ul, x = v+ ¢, r>v = h, | = a(1 - €?)andl = r (1 + ecosv), the equation (2.1) may
be written as
?x Wi « (1 + ecosy)®

o (1+ecosy)®sin2(x - v) — N A er (x=v). (2.2)

3. SYNCHRONIZATION VIA ACTIVE CONTROL

For a system of two coupled chaotic oscillators, the magsem = f(x,y)) and the slave systeny €

a(x, y)), wherex(t) andy(t)are the phase space (state variables),f§rd/) andg(x, y) are the corresponding
nonlinear functions, synchronization in a direct senseli@spx(t) — y(t)] — 0 ast — oo. When this
occurs the coupled systems are said to be completely symizkh Chaos synchronization is related to the
observer problem in control theory [59]. The problem mayrkated as the design of control laws for full
chaotic observer (the slave system) using the known infoomaf the master system so as to ensure that
the controlled receiver synchronizes with the master systdence, the slave chaotic system completely
traces the dynamics of the master in the course of time.
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The system defined by (2.2) together with' = h, can be written as a system of three first order
differential equations when the three variables are introduced

X=Xy, X1=X, V=Xa

The new system is:

X1 = Xo,
wiu a (1 + ecosxz)®
X2 = ——= (1 + ecosxz)®sin 2(x; — x3) + ————————— {h (1 + ecosxs)? — 1?%,},
2|3 n|2 (1 _ e2)6 { }

X3 = |E2(1 + ecosxa)?. (3.1)

Let us define another system as follows:
Y1 =Yz +ug(t),

2

C wiu 5 . a (1 + ecosys)® 2 12
V2= -3 (1+ ecosys)”sin 2 — y3) + m {h(l + ecosys) I yz} + Ux(t),
. h 2
Va3 = |—2(1 + ecosys)” + us(t). (32)

where (3.1) and (3.2) are called the master and the slaversgsespectively, and in the slave sysig(t)
fori = 1,2, 3, are control functions to be determined. et y1 — X1, € = Y2 — X ande; = y3 — X3 be the
synchronization errors such that in synchronization stlimae,(t) — 0 fori = 1,2,3 from reference [60].

From (3.1) and (3.2), we obtain the error dynamics

& = e + uy(t),
. Wi 3 qi 3
&= 25 {(1 + €c0sx3)” sin 2(x; — X3) — (1 + ecosys)® sin 2§ — y3)}
ah
t o6
ni2(1-€?)

a

+na—éf

{(1 +ecosys)® - (1+ eCOSX3)8}

{X2 (1 + ecosxs)®—y, (1 + ecosy3)6} + Uy(t),

& = IEZ {(1+ ecosys)® - (1 + ecosxs)?| + us(t). (3.3)

The error system (3.3) to be controlled is a linear systerh eantrol inputs. Therefore, from reference [61],
the control functions can be redefined in order to eliminfagetérms in (3.3) which cannot be expressed as
linear terms ing, & andes as follows:

ua(t) = va(t)

2

up(t) = —% {(1 +ecosxs)>sin2(x; — x3) — (1 + ecosys)®sin 2¢; — y3)}
- ﬁiez)e’ {(1 +ecosys)® - (1+ ecosx3)8}
- ﬁ {X2 (1 + ecosxs)®-y, (1 + ecosy3)6} + Vo(t),
mmz—gﬂl+amwf—ﬁﬁeam@ﬂ+w®. (3.4)
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Therefore the linear error system can be written as follows:
e(t) = ex(t) + va(t),

&(t) = va(t),
es(t) = vs(b). (3.5)

The error system (3.5) to be controlled is a linear systerh wéintrol inputs/y, v, andvs as the function of
the error states;, e, andes. As stated, as long ?s lim(t) — Ofori = 1, 2, 3, synchronization between the

master (driver) and slave (response) system is realizatligththe system represented by (3.1) and (3.2) are
synchronized under active control. According to activetmmnmethod, the controlleng, v, andvs can be
written as:

v v ) =Ale & e) (3.6)

WhereAis a 3x 3 constant matrix. As per the Lyapunov stability theory amel Routh-Hurwitz criteria,
in order to make the close loop system (3.5) stable, the ppmEce of the elements & is such that the
system (3.5) must have all eigen values with the negatiMeats.

-1 1 0

0O -1 0 ] bring (3.5) into (3.6), we may obtain

0O 0 -1

LetA=

(& & &) =B(a & &),

& -1 -1 0 e e
& |=l0 -1 0 e |+Al & |.
& 0O 0 -1 & &
-2 0 O
= B:[o -2 0 ]
0O O 2

Now the slave system (3.2) can be defined as
Vi=X+2¥2 -1 - X,

w2 6
ot (1 + ecosxs)®sin 2(x; — x3) + @ (1 +ecosx)’

2578 N2 (1- &)

{h @+ ecosxg)Z—IzXz} + X2 = Yo,

V3 = |Dz(1 +eCoSx3)? + X3 — Ya. (3.7)

4. NUMERICAL SIMULATION

For the parameters involved in system under investigatien0.15,h = 0.1,1 = 0.7, u = 0.02,« = 0.0001,

n = 0.1 andwg = 0.3 and the initial conditions for master and slave system(®), x2(0), x3(0)] = [0, 0.1, 0]
and[y1(0), y2(0), y5(0)] = [0.1, 0.2, 0.1] respectively, the system has been simulated usiaipematicaThe
obtained results show that the system under consideratiieveed synchronization. Phase plots of (3.1)
and (3.2) (Figure 1), time series analysis of (3.1) and (&®&ure 2) and time series analysis of errors
(Figure 3) are the witness of achieving synchronizatiomben master and slave system. Further, it also
has been confirmed by the convergence of the synchronizatiality defined by

&(t) = (0 + () + (1) (4.1)
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Figure (4) confirms the convergence of the synchronizatiaiity defined by (4.1).

5. CONCLUSION

In this paper, we have investigated the chaos synchroaizbghaviour of the two identical planar oscilla-
tion of an ellipsoidal satellite in elliptic orbit under solradiation pressure, evolving fromfirent initial
conditions via the active control technique based on theupav stability theory and the Routh-Hurwitz
criteria. The results obtained were validated by numesiraulations usingnathematicdor the proposed
technique.
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