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Abstract
In the article, the isolated singularity, removable singularity, zero, pole, essential singularity and other
concepts and properties were used; Two lemmas on the isolated singularity were proved first, and to use
these lemmas, one property of essential singularity was proved then.
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1. INTRODUCTION

The deep research shows that theory of complex function has extensive application in physics, engineering,
and other subject[1−6].

As the important research content, in the article, the isolated singularity, removable singularity, zero,
pole, essential singularity and other concepts and properties[7−8] were used; Two lemmas on the isolated
singularity were proved first, and to use these lemmas, one property of essential singularity was proved
then.

2. THE PROOF OF LEMMAS; PREPARATION

Lemma 1 Let f be analytic on a region A and have an isolated singularity[1−6] atz0.
(i) z0 is a removable singularity[9−10] iff any one of the following conditions holds: (1) f is bounded in

a deleted neighborhood[11−14] of z0; (2) lim it
z→z0

f (z) exists; or (3) limit
z→z0

(z− z0) f (z) = 0. (Note that it is not

immediately evident that these three conditions are equivalent but the assertion is that they are and that each
is equivalent to the condition thatf has a removable singularity.

(ii)z0 is a simple pole iff lim it
z→z0

(z− z0) f (z) exists and is unequal to zero. This limit equals the residueof

f at z0.
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(iii) z0 is a pole of order≤ k(or possibly a removable singulari0) iff any one of the following conditions
holds:(1) There is a constant M>0 and an integerk ≥ 1 such thatf (z) ≤ M

|z−z0|
k . in a deleted neighborhood

of z0; (2)lim it
z→z0

(z− z0)k+1 f (z) = 0; or (3)limit
z→z0

(z− z0)k+1 f (z) exists.

(iv) z0 is a pole of orderk ≥1 iff there is an analytic function[15] ϕ defined on a neighborhood U ofz0

such thatU\{z0} ⊂ A such thatϕ(z0) , 0, and such that

f (z) =
ϕ(z)

(z− z0)k
for z ∈ U, z, z0.

Proof. (i)If z0 is a removable singularity, then in a deleted neighborhood of z0 we havef (z) =
∞
∑

n=0
an(z−z0)n

Since this series represents an analytic function in an undeleted neighborhood ofz0, obviously conditions
(1), (2), and (3) hold. Conditions (1) and (2) each obviouslyimplies condition (3), so it remains to be shown
that (3) implies thatz0 is a removable singularity forf . We must prove that eachbk in the Laurent expansion
of f aroundz0 is 0. Nowbk =

∫

γr
f (ζ)(ζ − z0)k−1dζ, whereγr is a circle whose interior (except forz0) lies in

A. Let ε¿ 0 be given. By condition (3) can choose r>0 with r < 1 such thatγr we have| f (ζ)| < ε

|ζ−z0|
= εr .

Then

|bk| ≤
1
2π

∫

γr

| f (ζ)||ζ − z0|
k−1|dζ | ≤

1
2π
ε

r
rk−1
∫

γr

|dζ |

=
1
2π
ε

r
rk−12πr = εrk−1 ≤ ε

Thus|bk| ≤ ε, Sinceε was arbitrarybk=0. We shall use (iii) to prove (ii). so (iii) is proved next.
(iii) This proof follows immediately by applying (i) to the function (z− z0)k f (z), which is analytic on A.

(One can easily obtained the details of the proof) (ii) Ifz0 is a simple pole, then in a deleted neighborhood
of z0 we have

f (z) =
b1

z− z0
+

∞
∑

n=0

an(z− z0)n =
b1

z− z0
+ h(z)

where h is analytic atz0 and whereb1 , 0 by the Laurent expansion. Hence

lim it
z→z0

(z− z0) f (z) = lim it
z→z0

(b1 + (z− z0)h(z)) = b1.

On the other hand, suppose that limit
z→z0

(z− z0) f (z) exists and is unequal to zero. Thus limit
z→z0

(z− z0)2 f (z) = 0.

By the result obtained in (iii), this says that

f (z) =
b1

z− z0
+

∞
∑

n=0

an(z− z0)n =
b1

z− z0
+ h(z)

for some constantb1, and analytic functionh. whereb1 may or may not be zero. But then (z− z0) f (z) =
b1 + (z− z0)h(z), so limit

z→z0

(z− z0) f (z) = b1. Thus, in fact,b1 , 0, and thereforef has a simple pole atz0.

(iv) z0 is a pole of orderk ≥1 iff

f (z) =
bk

(z− z0)k
+

bk−1

(z− z0)k−1
+ · · · +

b1

(z− z0)
+

∞
∑

n=0

an(z− z0)n

=
1

(z− z0)k















bk + bk−1(z− z0) + · · · + b1(z− z0)k−1 +

∞
∑

n=0

an(z− z0)n+k















, (bk , 0)

(wherebk , 0). This expansion is valid in a deleted neighborhood ofz0. ϕ(z) = bk + bk−1(z− z0) + · · ·+

b1(z− z0)k−1+
∞
∑

n=0
an(z− z0)n+k. Thenϕ(z) is analytic in the corresponding undeleted neighborhood (since it

is a convergent power series) andϕ(z0) = bk , 0. Conversely, given such aϕ, we can retrace these steps to
show that
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z0 is a pole of orderk ≥1.

Definition 1 Let f be analytic on a regionA and letz0 ∈ A. We say thatf has a zero of orderk at z0 iff
f (z0) = 0,. . . , f (k−1)(z0) = 0, f (k)(z0) , 0.

From the Taylor expansion

f (z) =
∞
∑

n=0

f (k)(z0)
n!

(z− z0)n

we see thatf has a zero of orderk iff, in a neighborhood ofz0, we can writef (z) = (z− z0)kg(z) whereg(z)
is analytic atz0 andg(z0) = f (k)(z0)

k! , 0. Thus fromLemma 1 (iv). let ϕ(z) = g(z)−1 we get the following.
Lemma 2 If f is analytic in a neighborhood ofz0, then f has a zero of orderkat z0 iff 1

f (z) has a pole of

orderk atz0. If h is analytic andh(z0) ,0, thenh(z)
f (z) also has a pole of orderk.

Obviously, ifz0 is a zero off and f is not identically equal to zero in a neighborhood ofz0, thenz0 has
some finite orderk. (Otherwise the Taylor series would be identically zero.)
Definition 1 In practical problems we usually are dealing with a pole. It is not hard to show that iff (z)
has a pole (of finite orderk) at z0, then| f (z)| → ∞ asz→ z0. However, in case of an essential singularity,
| f | will not, in general, approach∞, asz→ z0. In fact, we have the following result.

3. FINAL THEOREM AND ITS PROOF

Theorem 1 Let f have an essential singularity atz0 and letU be any (arbitrarily small) deleted neigh-
borhood ofz0. Then, for allw ∈ C, except perhaps one value, the equationf (z) = w has infinitely many
solutionsz in U.

Theorem 1 actually belongs in a more advanced course. However, we can easily prove a simple version.
Theorem 2 Let f have an essential singularity atz0 and letw ∈ C. Then there existz1, z2, z3, . . . . . . ,zn →

z0, such thatf (z)→ w.
Proof If the assertion were false, there would be a deleted neighborhoodU of z0 and anε > 0 such that
| f (z) − w| ≥ ε for all z ∈ U. Let g(z) = 1

f (z)−w . Thus on U, g is analytic, and sinceg(z) is bounded on

U(|g(z)| ≤ ε−1)£z0 is removable singularity by Lemma 1(i). Letk be the order of the zero ofgat z0(setk=0
if g(z0) ,0). (The order must be finite because otherwise, as mentionedpreviously, by the Taylor Theorem,
g would be zero in a neighborhood ofz0, whereasg is 0 nowhere onU.) Thus f (z) = w + 1

g(z) is either
analytic(if k=0) or has a pole of orderk by Lemma 2. This conclusion contradicts our assumption thatf
has an essential singularity.
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