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Abstract

This research work presents new development in the fieldtafalscience, where comparison is made the-
oretically on the #iciency of both classical regression models and that of@dtifineural network models,
with various transfer functions without data considemati®he results obtained based on variance estima-
tion indicates that ANN is better which coincides with theuks of Authors in the past on théieiency

of ANN over the traditional regression models. The certainditions required for ANN ficiency over

the conventional regression models were noted only thabptienal number of hidden layers and neurons
needed to achieve minimum error is still open to further atigation.
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1. INTRODUCTION

Neural networks are being widely used in many fields of stddys can be attributed to the fact that these
networks are attempts to model the capabilities of humam$&r&ince the last decade, neural networks
have been used as a theoretically sound alternative tditnaali regression models.

Although neural networks (NNs) originated in mathematicalirology, the rather simplified practi-
cal models currently in use have moved steadily towards #lé &f statistics. A number of researchers
have illustrated the connection of neural networks to tiawial statistical methods. For example Gallinari,
Thiria, Badran and Fogelman-Soullie (1991) have preseatedy/tical results that establish a link between
discriminant analysis and multilayer perceptions (MLRYdifor classification problems. Cheng and Titter-
ington ((1994) made a detailed analysis and comparisonradusneural network models with traditional
statistical methods.

Neural networks are being used in the areas of predictionctassification, areas where regression
models and other related statistical techniques havetivadlly been used. Ripley (1994) discusses the
statistical aspects of neural networks and classifies heataorks as one of a class of flexible non-linear
regression methods.
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2. AIM AND OBJECTIVES OF THE STUDY

The main purpose of this study is to compafiécéency of traditional regression model and that of artificia
neural network models with an attempt to recognize the ottelvgtter discriminating and predictive power.

For the realization of the above intention, the followingaseres are the underlined objectives:

(i) To compare theoretically a ANN model with a logistic ted@r function and a logistic regression
model.

(ii) To compare analytically the ANN model with linear trdesfunction and linear regression model.

(i) To estimate the means of the estimates of parameteraraus classes of non linear regression and
that of the ANN.

(iv) To estimate and compare variances of the parameteisthbfANN and that of traditional regression
model.

(v) To identify a better model based on the result obtainechfthe comparison.

3. SIGNIFICANCE OF THE STUDY

Methodological disputes that arise in practice often turigoestions of the nature interpretation and justifi-
cations of methods and models that relieved on to learn frmomplete and often “observational” (or non
experimental) data, the methodology of statistical inieseand statistical modeling. This research work
is of very high significance as it attempts to unravel thehtarnd settle the scores of methodological dis-
putes in the field of mathematical statistics, Accounting fimance, Health and medicine, Engineering and
Manufacturing, Marketing and general body of knowledgeéhwégards to using classical regression and
artificial neural modeling.

As the performance of a particular technique in comparisather technique depend on various factors
like the size of the sample, among others, in this studyngités comparing both techniques (ANN and
logistic models) analytically without data consideration

4. METHODOLOGY

The purpose of the study is to have the theoretical explamatf both techniques, which include their
variance analysis. The classical regression model instude

(i) Log-linear model

InNY=ao + a1x+ ¢

(ii) Linear-log model

Y=ap+ailnx+ g

(i) Yir=ao + a1 (1 + e*x)‘1 Logistic regression

The ANN class of models

()Y =ag+ar [1 + e‘(VOJ“W)]fl + @ Logistic transfer function

07 1x+e (1071x)

(i) Y = a0 + 1 [w] + g Hyperbolic transfer function

YLNN = Qo + @1y + a1y linear transfer function
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5. COMPARATIVE ANALYSIS OF THE VARIANCES OF TRADI-
TIONAL REGRESSION MODEL AND ANN MODELS

5.1 Linear-log Versus ANN with Logistic as Transfer Functian

In the section, the variances of the model under review wiltbmpared.
Let Y ¢ represents a lines-log model alWgayny denotes variable of a ANN with logistic as transfer
function.
Var [Yie] = Var [(Yie — Yiann) + Yiann]

Recall thatvar(Z+M) = Var(Z) + Var(M) + 2Cov(Z, M)
Let
Z =Y — Yiann and M = Yiann

Var [Yig] = Var (Yie — Yiann) + Var (Yeann) + 2Cov (Yie = Yeann) (Yeann)

. ~ ~ A ~ -1
SinceY g = &g + @1 In xandYann = o + a1 (1 + e‘(7°+71x))
We have
~ ~ ~ ~ -1 n ~ -1
Var (Yie) = Var [ao +a1lnx—ao- a1 (1 + e‘(7°+”x)) ] + Var [a/o + a1 (1 + e‘(7°+71x)) ]

~ ~ -~ ~ -1
+ 2Cov [a/o +a1In X, do + d (1+ e007) ]

Var (Yig) = Var (Yiawn) + Var [&1 (In X— o — d (1+ e‘(7°+71x))71)]
+ 2Cov [@o + 01, INX— o + a1 (1 + e‘(7°+71x))71]
Considering the nature of independency of the variables gapecCov(Z,M) = 0

= E@ZM)=E@2)- E(M)

-1
£ Go + axtn ) (s + a1+ e 0r) )|
= (ap+ a1lnx) [a/() +ay (1 + e—(70+71x))71]

E (@0 + @1InX) = ag + a1 In x sinceE (@) = ao
E [@0 var(1+ e-%w))’l] and = ag+ a1 (1+€00)  E@y) = oy
Therefore
Cov(ZM) =0

Var (YLG) =Var (YLANN) + Var |:(LAL’1 (In X - (1 + 67(7°+YIX))_1)]
172
Var (Vi) = Var (Yoaw) + [ln X (1+ e 0or) l] Var (a1)
Var (@7) is non negative function
[In x — (1 + e 00+19)~112 s also a non-negative function for every x.

Therefore,
Var (Ys) > Var (Yaann)
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5.2 Linear-log versusANN with Hyperbolic as transfer function

If Y. andY_ann denote linear-log andNN with hyperbolic as transfer function respectively, theiaace
of linear-log is as follows
Var [Yie] = Var [(Yie — Yuann) + Yhann]

Var (Yig) = Var (Yie — Yuann) + V (Yann) + 2Cov([(Yie = YHann) > Yann]
With Y g = @p + @1 Inx and

YHANN = @0 + @1

eotyix — e*('}/OJr'ylx)
@0ty + g (o+y) i

@0+rix _ @ (Yo+y1x) @0+ _ @ (Yo+yix)
Var (YLG) = Var &0+&1Inx—&o—&1[m” V|ao + a1 m”
@0ty — @ oty @0ty — @Yoty
+ 2Cov|ag + a1 In X&o—@l[m},@o+@1 m”

@otyix — e_(70+71x)
+ Var

ero+tvix — @Yoty )}

Var (Y. g) = Var [al (In X— @0t + 0oty

@0+t71x 4+ e (ro+yw) o+ al(

~ @otrx — g otrd\ (@0t — g oty
+2Cov|d; Vb2 — dac[lnx - ————— ), do+ &1 —M
eotyix 4 ety ety + g (otrix)

Similarly Covariance structure can be shown to be equalro. Zeghen we have

e@otyix — e*(VOJr?’lx) ))]

Var (YLG) =Var (YHAAN) + Var |:Q’1 (ln X — (m

2

Var (@)

@otyix — e*(VOJr?’lx)
Var (YLG) =Var (YHANN) +|Inx - ( )

@0ty71x 4 g (Yotyix)

SinceVar (a1) is a non-negative function, then

2
@0+71x—e(70+71x)
e € 2| >0
eotrixye (o) | =

Var (Yie) > Var (Yaa) if and only if [ln X —

5.3 Log-linear Versus ANN with Logistic Transfer Function

Similarly, by lettingY, | andY_ann denote the Log-linear andNN respectively, the variance of one can be
obtained in terms of the other.
The log-linear model is defined as follows

YiL =InY = ap + ax
Var (Yi) = Var [(Ye — Yeann) + Yeann]
YiL — Yiann = @o + a1 — @o — @1 (]_ + e—(70+71x))71
-1

=& [X— (1 + e—(70+71x)) ]

Var (Y..) = Var [&1 (x - (1 + e“WW))*l)] + Var [&0 + & (1 + e‘(7°+71x))71] + 2Cov

[&1 (x - (1 + e""’*m))_l) Gt ( 1+ e’('}/OJr‘}/lx))_l]
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Since covariance structure is zero, we have
172
Var () = [x ) ] Var (a1) + Var (Yoan)

SinceVar (@1) is a non-negative function,

_112
Var (Y1) > Var (Yeann) iff [x - (1 + e“WW)) l] is equal to or greater than zero.

5.4 ANN Model with a Logistic Transfer Function Versus Logidic Regression Model

The logistic regression model of the foipr = @ + a1 (1 + e*")’l is considered
A perception model with a logistic transfer function is gias

~ ~ 1
YLTMN = Qo + a1 (1 + e‘(7°+7'x))

Yior — YLTNN = @1 [(1 +eX) o (1 n e’(?’O*)’ix))_l]
V (YLOR) =V (YLOR - YLTNN) +V (YLTNN) + 2Cov [(YLORYLTNN) YLTNN]
SinceCov[Yior — Yian, Yiran] = 0, we have

V (Yior) =V (Yior — Yiran) + V (Yiran)

V (Yior) = V (Yiran) + V(1) [(1 +e) o (1 + e*(yowix))_lr

V (Yior) = V (Yirnn) iff ,
V (a1) [(1 +eX) - (1 + e*(Vf’”ix))_l] > 0 ande™ # g (o7

5.5 ANN Model with a Linear Transfer Function Versus Univariate Linear Regres-
sion Model

Y. = @g + a1X
YINN = @ + @170 + @1Y1X
YL = YINN = @1X = @1Y0 — Q10X
= a1 (X~ Y0 - Y0X)
YL = Yinn = @1 [X(1 = F0) = o]
V(Y1) = VYL = Yinn] + V (Yinn) + 2Cov [ YL = Yinw, Yinn]

SinceCov[YL — Yinn, Yinn] =0
V(YD) =V (Youn) + V (@1) [X (1 - @1) — Go)?

V(Y1) > V (Yinn) iff
V (a1) [x(1-%1) - 70]* = 0
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6. CERTAIN CONDITIONS

From the critical analysis of the variances of the modelssunelview, the following are noted.
(i) ANN model with logistic function out-performed the linelog if and only if

[In X — (1 + e’(”’”lx))_lr >0

(i) ANN model with Hyperbolic as transfer function will bestter than that of logistic regressidfi i

@0ty — @ (Yotyw) 2
nx—-{— || >0
@0ty + gty

(iif) ANN model with logistic as transfer function possesetter dficiency over log-linear modeffi

[X - (1 + e‘(70+71x))7l]2 >0

7. SUMMARY, CONCLUSION AND RECOMMENDATION

7.1 Summary

This research work has presented an analytically theiency of both traditional regression model of
various classes and the ANN of various transfer functioralpsis of variance of each model was also
conducted without data consideration.

7.2 Conclusion

Based on the result obtained from the variable analysidpll@ving measures are hereby concluded:

(i) Without data consideration, the results obtained frarniance analysis confirmed the competence
of artificial neural network model of various transfer fuoats over the conventional regression model,
which coincided with the earlier work by fiiérent Authors on the competence of ANN over the traditional
regression models using data across fields.

7.3 Recommendation

This research work is conducted to put end to methodologiisplute among the users of both classical
regression and Artificiaheural network model. Therefore, from the conclusion adiat, the following
measures are recommended objectively:

(i) That World body of statistics should incorporate thectéag of artificial neural network into their
Curriculum.

(ii) That ANN should be welcomed as very good replacemenaf@rnative approach to the classical
regression model.
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