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Abstract
This research work presents new development in the field of natural science, where comparison is made the-
oretically on the efficiency of both classical regression models and that of artificial neural network models,
with various transfer functions without data consideration. The results obtained based on variance estima-
tion indicates that ANN is better which coincides with the results of Authors in the past on the efficiency
of ANN over the traditional regression models. The certain conditions required for ANN efficiency over
the conventional regression models were noted only that theoptimal number of hidden layers and neurons
needed to achieve minimum error is still open to further investigation.
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1. INTRODUCTION

Neural networks are being widely used in many fields of study.This can be attributed to the fact that these
networks are attempts to model the capabilities of human brains. Since the last decade, neural networks
have been used as a theoretically sound alternative to traditional regression models.

Although neural networks (NNs) originated in mathematicalneurology, the rather simplified practi-
cal models currently in use have moved steadily towards the field of statistics. A number of researchers
have illustrated the connection of neural networks to traditional statistical methods. For example Gallinari,
Thiria, Badran and Fogelman-Soullie (1991) have presentedanalytical results that establish a link between
discriminant analysis and multilayer perceptions (MLP) used for classification problems. Cheng and Titter-
ington ((1994) made a detailed analysis and comparison of various neural network models with traditional
statistical methods.

Neural networks are being used in the areas of prediction andclassification, areas where regression
models and other related statistical techniques have traditionally been used. Ripley (1994) discusses the
statistical aspects of neural networks and classifies neural networks as one of a class of flexible non-linear
regression methods.
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2. AIM AND OBJECTIVES OF THE STUDY

The main purpose of this study is to compare efficiency of traditional regression model and that of artificial
neural network models with an attempt to recognize the one with better discriminating and predictive power.

For the realization of the above intention, the following measures are the underlined objectives:

(i) To compare theoretically a ANN model with a logistic transfer function and a logistic regression
model.

(ii) To compare analytically the ANN model with linear transfer function and linear regression model.

(iii) To estimate the means of the estimates of parameters ofvarious classes of non linear regression and
that of the ANN.

(iv) To estimate and compare variances of the parameters of both ANN and that of traditional regression
model.

(v) To identify a better model based on the result obtained from the comparison.

3. SIGNIFICANCE OF THE STUDY

Methodological disputes that arise in practice often turn on questions of the nature interpretation and justifi-
cations of methods and models that relieved on to learn from incomplete and often “observational” (or non
experimental) data, the methodology of statistical inference and statistical modeling. This research work
is of very high significance as it attempts to unravel the truth and settle the scores of methodological dis-
putes in the field of mathematical statistics, Accounting and finance, Health and medicine, Engineering and
Manufacturing, Marketing and general body of knowledge with regards to using classical regression and
artificial neural modeling.

As the performance of a particular technique in comparison to other technique depend on various factors
like the size of the sample, among others, in this study, attempt is comparing both techniques (ANN and
logistic models) analytically without data consideration.

4. METHODOLOGY

The purpose of the study is to have the theoretical explanation of both techniques, which include their
variance analysis. The classical regression model includes:

(i) Log-linear model

lnY = α0 + α1x + ei

(ii) Linear-log model

Y = α0 + α1lnx + ei

(iii) YLR = α̂0 + α̂1 (1+ e−x)−1 Logistic regression

The ANN class of models

(i) Y = α0 + α1

[

1+ e−(γ0+γ1x)
]−1
+ ei Logistic transfer function

(ii) Y = α0 + α1

[

eγ0+γ1x−e−(γ0+γ1x)

eγ0+γ1x+e−(γ0+γ1x)

]

+ ei Hyperbolic transfer function

YLNN = α̂0 + α̂1γ̂0 + α̂1γ̂1x linear transfer function
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5. COMPARATIVE ANALYSIS OF THE VARIANCES OF TRADI-
TIONAL REGRESSION MODEL AND ANN MODELS

5.1 Linear-log Versus ANN with Logistic as Transfer Function

In the section, the variances of the model under review will be compared.
Let YLG represents a lines-log model andYLANN denotes variable of a ANN with logistic as transfer

function.
Var [YLG] = Var [(YLG − YLANN ) + YLANN ]

Recall thatVar(Z+M) = Var(Z) + Var(M) + 2Cov(Z, M)
Let

Z = YLG − YLANN and M = YLANN

Var [YLG] = Var (YLG − YLANN ) + Var (YLANN ) + 2Cov (YLG − YLANN ) (YLANN )

SinceYLG = α̂0 + α̂1 ln x andYLANN = α̂0 + α̂1

(

1+ e−(γ0+γ1x)
)−1

We have

Var (YLG) = Var
[

α̂0 + α̂1 ln x − α̂0 − α̂1

(

1+ e−(γ0+γ1x)
)−1

]

+ Var
[

α̂0 + α̂1

(

1+ e−(γ0+γ1x)
)−1

]

+ 2Cov
[

α̂0 + α̂1 ln x, α̂0 + α̂1

(

1+ e−(γ0+γ1x)
)−1

]

Var (YLG) = Var (YLANN ) + Var
[

α̂1

(

ln x − α̂0 − α̂1

(

1+ e−(γ0+γ1x)
)−1

)]

+ 2Cov
[

α̂0 + α̂1, ln x − α̂0 + α̂1

(

1+ e−(γ0+γ1x)
)−1

]

Considering the nature of independency of the variables, one expectCov(Z,M) = 0

⇒ E (ZM) = E (Z) · E (M)

E
[

(α̂0 + α̂1 ln x)
(

α̂0 + α̂1

(

1+ e−(γ0+γ1x)
)−1

)]

= (α0 + α1 ln x)
[

α0 + α1

(

1+ e−(γ0+γ1x)
)−1

]

E (α̂0 + α̂1 ln x) = α0 + α1 ln x sinceE (α̂0) = α0

E
[

α̂0 + α̂1

(

1+ e−(γ0+γ1x)
)−1

]

and = α0 + α1

(

1+ e−(γ0+γ1x)
)

E (α̂1) = α1

Therefore

Cov(ZM) = 0

Var (YLG) = Var (YLANN ) + Var
[

α̂1

(

ln x −
(

1+ e−(γ0+γ1x)
)−1

)]

Var (YLG) = Var (YLANN ) +
[

ln x −
(

1+ e−(γ0+γ1x)
)−1

]2
Var (α̂1)

Var (α̂1) is non negative function
[ln x − (1+ e−(γ0+γ1x))−1]2 is also a non-negative function for every x.
Therefore,

Var (YLG) ≥ Var (YHANN )
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5.2 Linear-log versusANN with Hyperbolic as transfer function

If YLG andYLANN denote linear-log andANN with hyperbolic as transfer function respectively, the variance
of linear-log is as follows

Var [YLG] = Var [(YLG − YHANN) + YHANN ]

Var (YLG) = Var (YLG − YHANN ) + V (YANN) + 2Cov [(YLG − YHANN ) , YANN ]

With YLG = α̂0 + α̂1 ln x and

YHANN = α̂0 + α̂1

[

eγ0+γ1x − e−(γ0+γ1x)

eγ0+γ1x + e−(γ0+γ1x)

]

i

Var (YLG) = Var

[

α̂0 + α̂1 ln x − α̂0 − α̂1

[

eγ0+γ1x − e−(γ0+γ1x)

eγ0+γ1x + e−(γ0+γ1x)

]]

+ V

[

α̂0 + α̂1

[

eγ0+γ1x − e−(γ0+γ1x)

eγ0+γ1x + e−(γ0+γ1x)

]]

+ 2Cov

[

α̂0 + α̂1 ln xα̂0 − α̂1

[

eγ0+γ1x − e−(γ0+γ1x)

eγ0+γ1x + e−(γ0+γ1x)

]

, α̂0 + α̂1

[

eγ0+γ1x − e−(γ0+γ1x)

eγ0+γ1x + e−(γ0+γ1x)

]]

Var (YLG) = Var

[

α̂1

(

ln x −
eγ0+γ1x − e−(γ0+γ1x)

eγ0+γ1x + e−(γ0+γ1x)

)]

+ Var

[

α̂0 + α̂1

(

eγ0+γ1x − e−(γ0+γ1x)

eγ0+γ1x + e−(γ0+γ1x)

)]

+ 2Cov

[

α̂1

√
b2 − 4ac

(

ln x −
(

eγ0+γ1x − e−(γ0+γ1x)

eγ0+γ1x + e−(γ0+γ1x)

)

, α̂0 + α̂1

(

eγ0+γ1x − e−(γ0+γ1x)

eγ0+γ1x + e−(γ0+γ1x)

))]

Similarly Covariance structure can be shown to be equal to zero. Then we have

Var (YLG) = Var (YHAAN) + Var

[

α̂1

(

ln x −
(

eγ0+γ1x − e−(γ0+γ1x)

eγ0+γ1x + e−(γ0+γ1x)

))]

Var (YLG) = Var (YHANN ) +

[

ln x −
(

eγ0+γ1x − e−(γ0+γ1x)

eγ0+γ1x + e−(γ0+γ1x)

)]2

Var (α̂1)

SinceVar (α̂1) is a non-negative function, then

Var (YLG) ≥ Var (YHANN) if and only if
[

ln x − eγ0+γ1x−e−(γ0+γ1x)

eγ0+γ1x+e−(γ0+γ1x)

]2
≥ 0

5.3 Log-linear Versus ANN with Logistic Transfer Function

Similarly, by lettingYLL andYLANN denote the Log-linear andANN respectively, the variance of one can be
obtained in terms of the other.

The log-linear model is defined as follows

YLL = ln Y = α̂0 + α̂1x

Var (YLL) = Var [(YLL − YLANN ) + YLANN ]

YLL − YLANN = α̂0 + α̂1 − α̂0 − α̂1

(

1+ e−(γ0+γ1x)
)−1

= α̂1

[

x −
(

1+ e−(γ0+γ1x)
)−1

]

Var (YLL) = Var
[

α̂1

(

x −
(

1+ e−(γ0+γ1x)
)−1

)]

+ Var
[

α̂0 + α̂1

(

1+ e−(γ0+γ1x)
)−1

]

+ 2Cov

[

α̂1

(

x −
(

1+ e−(γ0+γ1x)
)−1

)

, α̂0α̂1

(

1+ e−(γ0+γ1x)
)−1

]
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Since covariance structure is zero, we have

Var (YLL) =
[

x −
(

1+ e−(γ0+γ1x)
)−1

]2
Var (α̂1) + Var (YLANN )

SinceVar (α̂1) is a non-negative function,

Var (YLL) ≥ Var (YLANN ) iff
[

x −
(

1+ e−(γ0+γ1x)
)−1

]2
is equal to or greater than zero.

5.4 ANN Model with a Logistic Transfer Function Versus Logistic Regression Model

The logistic regression model of the formYLR = α̂0 + α̂1 (1+ e−x)−1 is considered
A perception model with a logistic transfer function is given as

YLT MN = α̂0 + α̂1

(

1+ e−(γ0+γix)
)−1

YLOR − YLT NN = α̂1

[

(

1+ e−x)−1 −
(

1+ e−(γ0+γix)
)−1

]

V (YLOR) = V (YLOR − YLT NN ) + V (YLT NN ) + 2Cov [(YLORYLT NN ) YLT NN ]

SinceCov [YLOR − YLT NN , YLT NN ] = 0, we have

V (YLOR) = V (YLOR − YLT NN ) + V (YLT NN )

V (YLOR) = V (YLT NN ) + V (α̂1)
[

(

1+ e−x)−1 −
(

1+ e−(γ0+γix)
)−1

]2

V (YLOR) ≥ V (YLT NN ) iff

V (α̂1)
[

(1+ e−x)−1 −
(

1+ e−(γ0+γix)
)−1

]2
≥ 0 ande−x

, e−(γ0+γ1x)

5.5 ANN Model with a Linear Transfer Function Versus Univariate Linear Regres-
sion Model

YL = α̂0 + α̂1x

YLNN = α̂0 + α̂1γ̂0 + α̂1γ̂1x

YL − YLNN = α̂1x − α̂1γ̂0 − α̂1γ̂0x

= α̂1 (x − γ̂0 − γ̂0x)

YL − YLNN = α̂1
[

x (1− γ̂0) − γ̂0
]

V (YL) = V [YL − YLNN ] + V (YLNN ) + 2Cov [YL − YLNN , YLNN ]

SinceCov [YL − YLNN , YLNN ] = 0

V (YL) = V (YLNN ) + V (α1) [x (1− α̂1) − α̂0]2

V (YL) ≥ V (YLNN ) iff

V (α1)
[

x (1− γ̂1) − γ̂0
]2 ≥ 0
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6. CERTAIN CONDITIONS

From the critical analysis of the variances of the models under review, the following are noted.
(i) ANN model with logistic function out-performed the linear-log if and only if

[

ln x −
(

1+ e−(γ0+γ1x)
)−1

]2
> 0

(ii) ANN model with Hyperbolic as transfer function will be better than that of logistic regression iff

[

ln x −
(

eγ0+γ1x − e−(γ0+γ1x)

eγ0+γ1x + e−(γ0+γ1x)

)]2

> 0

(iii) ANN model with logistic as transfer function posses a better efficiency over log-linear model iff

[

x −
(

1+ e−(γ0+γ1x)
)−1

]2
> 0

7. SUMMARY, CONCLUSION AND RECOMMENDATION

7.1 Summary

This research work has presented an analytically the efficiency of both traditional regression model of
various classes and the ANN of various transfer function. Analysis of variance of each model was also
conducted without data consideration.

7.2 Conclusion

Based on the result obtained from the variable analysis, thefollowing measures are hereby concluded:
(i) Without data consideration, the results obtained from variance analysis confirmed the competence

of artificial neural network model of various transfer functions over the conventional regression model,
which coincided with the earlier work by different Authors on the competence of ANN over the traditional
regression models using data across fields.

7.3 Recommendation

This research work is conducted to put end to methodologicaldispute among the users of both classical
regression and Artificial/neural network model. Therefore, from the conclusion arrived at, the following
measures are recommended objectively:

(i) That World body of statistics should incorporate the teaching of artificial neural network into their
Curriculum.

(ii) That ANN should be welcomed as very good replacement foralternative approach to the classical
regression model.
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