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Abstract

In this article we analyze the distribution in the complear of the roots of the characteristic functions
for first and second order linear delayfdrential equations. We prove necessary arfficsent conditions
which are satisfied with respect to the variation of thefitcients in order the characteristic roots have
negative real parts.
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1. INTRODUCTION

As it is well known the study of stability of solutions of dgldifferential equations occurs through the
analysis of the position i of its characteristic roots. Also the expansions in serfesxponentials of
solutions of these equations are based on the characenstis. These equations are widely used to
describe many problems that contain time dependence, so/éstigation of the distribution in the complex
plane of the characteristic roots is great interesting. deday diferential equations there are, in general,
infinitely many characteristic roots in contrary to ordipdifferential equations, where they are finite, and
therefore there are infinitely many exponential solutidfa. details on this field the books [1], [2], [4] and
[6] are available. In [3] stability charts for first order sical autonomous delayftérential equations with
real or complex coicients have derived, while in [7] these problems have stlidieen the equation has
periodic codicients. Stability for delay dierential equations, using the characteristic roots, is stisdy

in [5]. More general classes involving multiple and distitded delays are studied in [8], [9] and first order
neutral systems in [10]. In [9] one can find a rich bibliograpind some interest aspects.

Here we will study mainly delay tlierential equations advanced type with constant reaffictents.
These equations have an essentifiledence from classical delayftérential equations: its characteristic
roots asymptotically distributed along a curve on which tbal part of the characteristic roots tend to
infinite. In particular we prove necessary andfisient conditions with respect to the variation of the
codficients. Also for classical first and second order lineargdifierential equations we prove conditions
in order the characteristic roots have negative real parts.
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2. PRELIMINARIESAND RESULTS

The characteristic roots of scalar autonomous delffigrdintial equations with either real or complex coef-
ficients has been studied in [3]. In particular, in [3] thessiaal equation has been considered

X(t) = ax(t) + bx(t — 1), (1)

with codficientsa, b real or complex. The delay has been assumed equal to oneuvitss of generality,

since with an appropriate transform the general case redudg. A general theorem, which connects the

sign of the real parts of the characteristic roots with theffacients of the equation (1) is formulated below

and its proof is a simple consequence of Hayes’ theorem[444).

Theorem 1: All the characteristic roots of (1), where a and b are realeheegative real parts if and only if
(a<1,and

(iya<-b< \Ja?+a2
wherea, is the root of the equatioa, = atana such that < a; < . If a =0, we takea; = 3.
Proof: The characteristic equation of (1)4as- a— be? = 0,z € C, or equivalently

ad+b-z&=0. 2

In (2) we apply the result of Hayes’ p.444 in [1], and the prisafompleteo
Now we consider the advanced type equation

u(t-1)+aut) + but-1)=0, 3)
with real codficientsa, b and characteristic equation
ze?+a+be?=0 4)
or equivalently,
b+z+a€f=0.

Letz = x+ iy, X,y € R be a solution of (4) . Then it is obvious that="x — iy is also a solution of (4).
Therefore we assume> 0 without loss of generality. From (4) we take

X+ b = —a€e‘cosy,
{ y = —ae*siny. ®)
From (5) we have
{ (X + b)? +y? = a?e?, )
m = tany,

for x# —bandy # 7 +«r, k € Z. The case = —b can be lead to a solution of (5) if and onlyit= 7 + 7,
k € Z, but this is possible if and only & = ieb(g + k7).
We observe from (6), that the point, §) in the complex plane, is layed on the curves,

(c1) : y=++a2e* — (x+ b)?
oy y
() : x=-b+ —tany'
Proposition 1: (A). If a > 0 then there exists a unique solution of (4). Moreover thie¥dhg equivalents
are valid.
() x<0sa+b>0
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(i) x=0sa+b=0
(i) x>0 a+b<0
(B). If a= 0, thenz = —his the unique real solution of (4).
(C).Ifa< 0, then
(i) There exist no real roots of (4), if and onlyadf< —e®-1.
(i) There exist a double real root of (4) if and onlyas= —e*1.
(i) There exist two distinct real roots of (4) if and only if
Proof.: We assumg = 0 and hence = x € R. Then (5) reduces to

—agf=x+Db @)
All possible solutions of (7) belongs to the set of intergm of the graphs of
A(X) = —a€*, B(X) = x+b

(A) Fora > 0, we haveA'(x) = —ae* < 0 andB’(x) = 1 > 0, which imply uniqueness. The cases (i),
(i), (iii) are trivial.
(B) Straightforward from (7).
(C) Fora < 0, we have
A(X)=-ae>0B(x)=1>0.

i.e. the graphs have positive slopes. The point of touch pfexuis the solution of the system and hence
Xx=1-b. Soif A(1-b) > B(1-b) or—ae'™® > 1 that isa < —€*1, then there exist no real characteristic
roots and inversely. The other cases are proved simitarly.

Concerning with the imaginary characteristic roots we Haedollowing.
Proposition 2: The imaginary numbez = iy,y € R is a root of (4) if and only if there exist=0,1,2,...
such that

y _y _
siny’ b= coly’ y €l = (km, (k + 1)n) (8)

Proof: From (4), forx = 0, we take
b=-acosy, y=asiny

and hence the relations (8).
Now we consider the linear delayffrential equation second order

u”(t) + au'(t) + bu(t) + cu(t— 1) = 0. 9)
The characteristic equation of (9) is
Z+az+b+ce?=0. (10)

We prove a necessary andistient condition that all the characteristic roots of (9) daegative real parts.
Theorem 2: Leta > 0,b > 0,c € R. Also leta,, k > 0, be the unique root of equation

cota, = (a; - b)/a,

which lies on the intervaliz, kr + 7). We define the numberas follows:
() n=1,ifc > 0anda? > 2b,
(i) n = oddk for which a lies closest toyb — a2/2, if ¢ > 0 anda® < 2D,
(i) n= 2, if c < 0 anda? > 2b,
(iv) n = evenk for which a lies closest toy/b — a2/2, if ¢ < 0 anda? < 2b.
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Then a necessary andfBuaient condition that all the roots of (10) lie to the left oktlmaginary axis is that
c>0and ¢sinay)/(aa,) < 1or
-b<c<0and€sina))/(aa)) < 1.
Proof: The characteristic equation (10) is equivalent to
(Z+az+b)e+c=0 (11)

Then for (11) we apply theorem 13.9 of [1] and the proof is fied.o
Proposition 3: For the equation (9) we have
(i) if a® — 4b < 0 andc > 0, then there exist no real characteristic roots,
(i) if a® —4b > 0 andc < 0, then there exist two distinct real roots.
Proof: We assumg = 0. Then (10) reduces to

X2 +ax+b=—ceX (12)

being the second equation identically satisfied. All pdsssielutions of (13) belongs to the set of intersec-
tions of the graphs of
AX) = X2 +ax+bh, B(x)=-ce™

(i) if @ —4b < 0 andc > 0, A(X) > 0 andB(X) < 0, hence there exist no intersections.
(i) if @ - 4b > 0 andc < 0, thenA(-§) < 0 andB(x) > 0 and hence there exist two distinct
intersectionsa
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