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Abstract

In this paper, the solution of the problem of transient heaideiction in a thin circular plate subjected to
two types of boundary conditions is obtained by employir@itiiegral transform technique in the form of
infinite series. It is assumed that the plate is in the plaake sif stress and initially the temperature of the
plate is kept at zero.

The first type of boundary condition is that in which the upparface is kept at arbitrary temperature,
lower surface is kept at zero temperature and circular eslgesulated. In the literature, the origin of
coordinates is taken to be the centre of the lower surfadesoblate.

The second type of boundary condition is that in which a lireanbination of temperature and its
normal derivatives is prescribed on the circular edge abagedn the plane surfaces of the plate.

The true results are given in the form of figure.
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1. INTRODUCTION

Roy ChoudhuH! studied the normal deflection of a thin clamped circulareptiie to ramp type heating
of a concentric circular region of the upper face. The lovemefof the plate is kept at zero temperature,
while the circular edge is thermally insulated. A more gahproblem of determining the transient quasi-
static thermal deflection of a thin circular plate on uppefaae of the plate is studied by Meshram and
DeshmukH?. The generality of the problemlfh lies in the fact that the upper face is subjected to arbitrary
temperature distribution.

Meshram and Deshmukhconsidered a thin circular plate of thicknéssccupying the spach : 0 <
r < a,0 < z < h.nitially the temperature of the plate is kept at zero. Theer surface is kept at arbitrary
temperature, lower surface is kept at zero and the circalge és insulated. Let the problem studielin
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be named as Problem1.LEfr, z t) be the temperature of the plate at titrgatisfying the equation

PT 19T &PT 14T

a7 trar T a2 Kot (1-1)

subject to the initial condition
[T(r.zt)0=0 (1.2)

and the boundary conditions
[T(r,zt)]=0=0 (1.3)
[T(r.zt)]=n = f(r. 1) (1.4)

oT

g]ra =0 (1.5)

wherek is the thermal dtusivity of the material of the plate. The heat conductiorbpem in?! is the same
as the above except that the origin is shifted to the centifesofniddle plane of the plate.

Guided by a procedure outlined kifcer®, the so called pseudo-steady temperature distributioerfun
tion is introduced and an alternative solution is obtaiméd for Problem 1. The alternative solutioridhis
erroneous and henceflidirent from those obtained by using integral transform naghdlso, since the er-
roneous alternative solutions are simpler, they are takbe the solutions of problems under consideration.
The correct solutions obtained by using integral transforethods are either used for comparigbn

In the present paper we find the alternative solution cdgrémt Problem 1, and show that the so called
alternative solution is the same as the one obtained by usiegral transform methods.

2. SOLUTION OF THE PROBLEM 1

For functionT(r, z t) let f(gn,z,t) denote the finite Hankel transform with respect tand Iet'IT(r, Am, 1)
denote the finite Fourier sine transform with respect to m the

a

h
'I?(fn, Am, t) = frJo(fnr)drfT(r,z,t) sin(Am2)dz (2.1)
0

0
whereg, is the d'positive root of the transcendental equation
Ji(&na) =0 (2.2)

Taking the two transforms for the equation (1.1) and usingd@mns (1.3)-(1.5) we get

a

oT = .
St T HmT = Kln(=1)" 0 (2.3)
where
nr
dn= =i i = K[&3+ A7) (2.4)
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Solving (2.3) subject to condition (1.2) gives
t
T (én, Ay 1) = klm(=1)™? f f(én, )it (2.5)

Now using the inversion formulae for the finite Hankel tramef and the Fourier sine transforms, we get

Jo(énr) Am(=1)""* Sin(Am2) Amn(t)
T(r,zt) = 2.6
e Zl ; B (20
where
t
Are(®) = [ f(en, )0 @7
0
By carrying out an integration by parts in (2.7) can show that
Ann(t) = T[f(fn,t) — f(£n, 0)e ¥t - f [ fEn )] at] (2.8)

whereumis given by (2.4) andnare the positive roots of the transcendental equation.(2.2)
THE ALTERNATIVE SOLUTION

We introduce the so called pseudo-steady temperaturédisdn functionTo(r, z t) in whicht is regarded
as parameter antly(r, z t) is the temperature of the plate at timeWe now takeTy(r, z t) to satisfy the
following equation

#To  18To  &°To _

a2 v T o (2-9)
subject to the boundary conditions
[To(r.zt)],-0=0 (2.10)
[To(r, Z )] = f(r.1) (2.11)
dTo
2 =o0 2.12
B 2.12)
Taking the finite Hankel transform and the finite Fourier sfanm of (2.9) and using (2.10)-(2.12) gives
1B To = ki (0, (-1 (2.13)
which using (2.3) may be written as
0 a
o [T = To| + 20 [T - To| = -+ To (2.14)

Solving the above equation and using (1.2) we find

t

T (€ Ams 1) — To(€nAms ©) = —To(€n, Am, 0)g ¥t — f g Him(t ” T(§n,/lm,t)dt (2.15)
0
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Substituting‘lfo from (2.13) into (2.15) yields
t
~ —1yml | .
T(&ns Ami 1) = M [f(gn, t)—f (&, 0)e ! f g Hm(t ” f(§n,t )dt’ ] (2.16)
m 0
which, in view of (2.8) , becomes
T (o Amn 1) = Klin(=1)™ Arn(t) (2.17)

This equation is the same as the one given by (2.5) and (h&)efore, inverting the two transforms we
obtainT(r, z t) given by (2.6) and (2.8). A major fierence between this solution and the one obtainéd in
is the positive sign with the integrand in (2.8). This makesalternative solution ifl erroneous.

3. DISPLACEMENT AND STRESS FUNCTIONS

The displacement functian(r, z t) is governed by equation

Py 1oy

a7 g = (Lnal (3.1)
subject to the condition

Y = 0atr = aforall timet (3.2)

wherev and a; are Poisson’s ratio and the dbeient of thermal expansion of the material of the plate
respectively .The stress functiomrg andog are given by

10y %y

O =—2U=—=; O = —Zﬂm

o (3.3)

whereu is Lame’ constant , while each of the stress functiopns o, andog, are zero within the plate in
the plane state of stress. From (3.1) and (3.2) it follows tha

e = =201+ v)aT — oy (3.4)

Thusoy is linear combination of T anadk,.
When the temperatufg is of the form

T(r2t = ) Eaz ) 3(&r) (3.5)
n=1

it may be shown that

En(z )
52

v(r,21) = ~(1+v)a Z [Jo(&ar) - Jo(na)] (3.6)

Indeed, we substitulefrom (3.5) into (3.1), carry out the integration and make ofsthe condition (3.2)
to arrive at (3.6). Substituting from (3.6) into (3.3) yields

(1,2 t) = =2u(L+v)a Y En(z 1) [(rén) ()] (3.7)
n=1
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In the case of Problem 1, using (2.6) and (3.5) we see that

4K .
#hEEd) rZizm(—l) SiN(Am2) Am(t) (3.8)

whereAm(t) is given by (2.8) .Thew andorare given by (3.6)-(3.8).

00

En(zt) =

Figurel
Variation of T = T(r, z t)/e1 given by Eqns. (3.5), (4.6) and (4.4) with r fo£t0.1, 0.2,0.4,0.6,0.8,1.0. The
values of other parameters axe'1, h=0.5,z= 0.3, k= 0.86. andy > 1
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Figure?2
Variation ofy = —x//(r,z,t)/ﬁl given by equations (3.6), (4.6) and (4.4) witfor r = 0.1,0.2,0.4,0.6,0.8.

The values of other parameters are the same as in Fig.1
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Figure3
Variation ofoy; = —o (1, z t)/y1 given by Egns.(3.7),(4.6) and (4.4) with z fe£ 0.1,0.2,0.3,0.4,0.6,0.8,1.0.The

values of other parameters axe1, h=1,r=0.0, k= 0.86. andy > 1
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4, SPECIAL CASE OF PROBLEM 1
Let f(r,t) in equation (1.4) be give by
f(r,t) = (ra- :—erz) [t — (t—to)H(t - to)] (4.1)

whereH(X) is the Heaviside function. For brevity of discussion wetniesour attention to the case when
0 <t <ty .Then we have

f(nt) = —aant/&3 (4.2)
0= [ ety 0 = asi 4.3)
0
Set
Ark

0= i 1= ~(1+)aas v = 2ps (4.4)

From (2.7) and (4.2) we get
Am(t) = - ?Z‘; [t+ (€7t~ 1), (4.5)

which together with (3.8) and (4.4) yields

aman o m(-1)™1sin(1m2) 2
A L ) o

Thus the temperatur@(r, z, t) is then given by (3.5) and (4.6) .Also from(3.5)-(3.7) ard4) we
note that the expression far(r, z t)/31can be obtained frond (r, z t)/a1Simply by replacingJo(é.r)by
[Jo(&nr) — Jo(fna)]/fﬁ. Similarly the expression far(r, z, t)/y1 can be obtained fror (r, z t)/a1 Simply
by replacinglo(¢ar) by |(rén) *J1(rén)|.

The variation ofT(r, z t)/azwith ris shown in Fig.1 fort = 0.1,0.2,0.4,0.6,0.8, 1.0 by takinga =
1,h = 05,z = 0.3,k = 0.86 andty > 1.The variation of(r, z t)/8; with t is shown in Fig.2 for =
0.1,0.2,0.4,0.6,0.8 by takinga = 1,h = 0.5,z = 0.3,k = 0.86 andt; > 1. Finally, the variation of
o (1, z t)/y1 with z is shown in Fig. 3 fot = 0.1,0.2,0.3,0.4,0.6,0.8, 1.0 by takinga= 1,h=1,r = 0.0,
k = 0.86 andty > 1. Forr = 0 the expression [£,)1J1(r&,)] is indeterminate and so the limit formula

En(zt) = -

Ixi_%[x’lJl(x)] = % 4.7)

is employed.
AsT(r,zt)is given by (2.6) and (2.7). A more suitable formTgf, z t)is given by (3.5), (3.8) and (2.8).
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