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Abstract:The Hirota bilinear method is used to solve the KdV model. As a
result, the exact expression of multi-soliton solutions of the KdV equation is
obtained.
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1. INTRODUCTION

The investigation of exact solutions of nonlinear wave equations plays an important role
in the study of nonlinear partial differential equation [PDE]. It is well known that there
are infinitely many solutions for every nonlinear equation, such as the tanh-function
method" ™, the Jacobi elliptic function expansion method” ™, the F-expansion method"™™,
sin-cosin method” ", the homogeneous balance method"'"*, and the Hirota bilinear
method"*'”. Among them, the Hirota bilinear method is one of the most effectively methods
for constructing exact solutions to PDEs. In this paper, the Hirota bilinear method is used to
solve the KdV equation. Our aim in this paper is to investigate multi-soliton solutions of the
KdV equation by the Hirota bilinear method.
We consider the the KdV equation"!
utavuu,+buu,, =0.
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2. THE HIROTA BILINEAR METHOD

Definite the Hirota bilinear operator has the form
- o 0.,0 0
DD (g N =l ==0" (= —9gt:0 /()] e
where m, n are nonnegative integer.
Hence
Dt(g'f):gtf'gfza
D.(g-f)=g.r-gf>
DX(g f)=gu [ 28 )+

DX(f)=2(fuf -

In particular

G
Let w=—
etw o
hence
" = zz((;.17),
FZ
= LL((i-]T)
X F,_ 2
_D'(G-F) GD(F-F)
xx F2 F F2 b
_D(G-F) _3D.G-F) D’(F-F)
xxx FZ FZ FZ

3. SOLUTION OF THE KDV EQUATION

We consider the generalized KdV Equation (1), let u=w,, we have
w.taww, +bw, =0 .

o

By integrated two side of the Equation (9) with respect to X , we derive

a o
w, +wa +bw_ =0,

Again, Let W:Q use Formula (1) to (8) and arrangement, we derive

F’
D(G-F)+bD (G- F) DG F)D.(GF)=3dD,(G-F)D.}(F-F) .
: + =0-
F? F*

Let the coefficient of F are zero , we have equations
D,(G - F)+ bDx*(G - F)=0,

D (G- F)[%DX(G F)— 3be2(F -F)]=0
Again , we let G = mF, by Equation (13) , we derive the conditions

12b
a=—
m

Below, by aid of the conditions (14), we consider the special case of Equation (1).

Case 1 when m=1, then a=12b, so the equation (1) become
ut12buu +bu,, =0 .
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We consider the Equation (15) and give the exact expression of multi-soliton solutions of
the Equation (15).
By Equation (15), we obtain the Hirota equation
D, (G- F)+bD}(G - F)=0.
ie.
D, (D+bD,) (F - F)=0. (16)
Firstly, we suppose Fy=const, F,=¢"""“1"! are the solutions, substitute in to Equation (15),
we have
Dx (Dt+be3) (FO ' Fl):FODx (Dt+be3) (Fl)
:FODX (Dt+bDX3) (ek1x+mlt+(51)
:FO kl(wl_,'_bkl}) (ek]xﬂultﬁsl)zo'
Then the dispersion relation of the Equations (15)
w,=-bk,’.

Secondly, we let
5

F= /%Iegj,af =kx+wt+6, o =-k .
where k0, are arbitrary constant. Also let
Flan) = £ e'F, (x0).
Substitute in to Equation (16), we have
D,(D,+bD)(F-F)= DD, +bD, )Y &"F,(x,1)Y &"F, (x,1)]

n=0 n=0

= D.(D,+bD Y &" > F, (x,0)F,(x,)] =0
n=0 m+l=n

=>"&" Y. D(D,+bD,)F, (x,))F,(x,0)) =0,

n=0 m+l=n

Let the coefficient of ¢" is zero, then

D.(D,+bD.’)( Y. F,F)=0,n>0.

m+l=n
ie.
2D,(D, +bD.)(F, - F,)+ D (D, +bD)Y F,  (x,))F, =0. (17)
m=0
When n=1, the reduction Equation (17) is
2D(D+bD,’) (F, - Fy)=0. (18)
Suppose that F=F,+F, where F,=1, F,=¢""""""1_ @ =-dk,’, we have the single soliton
solution to the equations (15) is

% | \
—w = 62 (ln F) _ (?) _ FF\-X _ F{Z _ klzele+MIr+i)l . (19)
x axz ax FZ (1 + ekl'”wl”&l )2

When n=2, the reduction Equation (17) is
2Dx (Dt+be3) (FZ : F0)+Dx(Dt+be3) (F] : Fl):0
ie.
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2D (D, +bD.’)(F, - F,)= D (D, +bD,)(F, - F,)

N N
— _Dx (D’ + be3 )(Z ek,x+(z)‘t+b, Z eij+w/f+§/ )

i=1 Jj=1
3 - < k 40
==D,(D,+bD))Q, Y e e )

i=l  j=1

5 = 3 kx+wt+5, kx+o t+6
==Y Y DD, +bD, )

=1 j=l

N N

=2 2k~ l(@, — @) + bk, k)Y

=l j=1

— 3 kX +;t+6; klx+(z)/.t+§l
- _ZISKZ/‘;IE(](/‘ — k)W, = W/) +b(k; - k(/) 1(e e ) (20)

A'lxﬂu]tﬂ)‘] kax+w, 145,

1
Suppose that F' = F, + F, + F, +Fa12Fle where F, =LF =e , F, =

0

>

: (kK ){Ow, —w,)+ bk, k)]
o, =—bk,", ap =— ’ : : 37
(ki+kj)[(wi+wj)+b(ki+kj) ]

we have the double soliton solution to the Equations (15) is

F‘C
_omr) ) R -F
T e F?

2 kx+o,t+6, 2 5. 5,
kl e 1 [0 + k2 ek2x+a)2t+bz + a12 (k1 + k2)2e(k1+k2)x+(a)l+m2)t+(bl+62)

1+ ek1X+ﬁ)1f+51 + ek2x+a)2t+62 + alze(kl+k2)x+(a)l+a)2)t+(61+52)

k t+0
(ke + ke pay, (K + kel Gy
T (I+e Gk @D

We suppose the N- soliton solution to the Equations (15) is
x ajpipj+ > uin;
i=1

F = Zelgxgjgn

4i=0,1
1<i<n

ke x+ayt+0, + ek2x+w2t+b‘2 +a.e
12

Case 2 when m=2, then a=6b, so the Equation (1) become

ur6buu,+buu, =0. (22)
Remark: when b=1, the Equation (22) is the usual KdV equation

uHouu, +uu, =0. (23)
We consider the Equation (22) and give the exact expression of multi-soliton solutions of

the Equation (22).
By Equation (16), we obtain the Hirota equation
D, (G- F)+bD}( G - F)=0.
ie.
D, (D+bD,)) (F - F)=0.
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So we can repeat case 1 and derive the single soliton solution, the double soliton solution

and the N- soliton solution to the Equations (22).

Case 3 when m=3, then a=4b, so the equation (1) become

ur4buu +buu,, =0. (24)
Case 4 when m=4, then a=3b, so the equation (1) become
u+3buu +buu, =0. (25)
Case 5 when m=6, then a=2b, so the Equation (1) become
uA2buu +buu,, . =0. (26)
Case 6 when m=12, then a=b, so the equation (1) become
urbuu tbuu,, =0. 27
Remark: when b=1, the Equation (27) is the usual KdV equation
utuu Fuu,, =0. (28)
Case 7 when m=12, then a=b, so the Equation (1) become
urbuu t+buu,, =0. (29)
Remark: when b=1, the Equation (29) is the usual KdV equation
utuu tuu,,, =0. (30)

CONCLUSION

In this paper, we have used the Hirota bilinear method to solve the KdV model. It is
significant to observe the condition (14) that the Hirota bilinear method can be used to obtain
solutions.
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