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Abstract: Computation of triple product integrals involving Daubechies
scaling functions may be necessary when using the wavelet-Galerkin method
to solve differential equations involving nonlinearities or parameters with
field variable dependence. Numerical algorithms for determining these triple
product integrals, known as three-term connection coefficients, exist but tend
to suffer from ill-conditioning. A more stable numerical solution algorithm is
presented herein and shown to be both accurate and robust.
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The Computation of Wavelet-Galerkin Three-Term Connection Coefficients on a
Bounded Domain

1. INTRODUCTION

The use of Daubechies wavelet families as Galerkin basis functions for solving differ-
ential equations is of growing interest [1,2]. These oscillatory functions have compact
support which allow sparse representation of complex responses on unbounded,
bounded or periodic domains [3-11]. For the discrete orthogonal wavelet-Galerkin
method, Daubechies scaling functions are commonly used as the functional basis [5,
6,11]. The Galerkin formulation for equations containing nonlinearities requiring
the product of the field variable with itself or its derivative require the integration
of a scaling function triple product. The Daubechies scaling functions cannot be
defined explicitly making analytic integration intractable, and their fractal nature
(i.e. discontinuities which are independent of scale) make numerical integration
error prone [12].

Innovative work by Chen et al. [6,13], Latto et al. [8], and Romine et al. [11]
provide algorithms to compute the exact solution to the three-term connection
coefficients on a bounded domain. In each of these references the authors solve
for the connection coefficients using a set of rank deficient scaling equations
defined recursively using the two-scale definition of the scaling functions. The
rank deficiency is filled by replacing a corresponding number of equations with
theoretically independent moment equations, allowing determination of a unique
set of connection coefficients. Due to the numerical error introduced during
implementation of these algorithm, the scaling equations and moment equations are
generally no longer independent. This has been found to lead to ill-conditioning of
the system and calculation of erroneous connection coefficients. A novel algorithm
is presented herein which can account for this numerical error by solving for a
set of connection coefficients which satisfy all the constraining equations in a
least-squares sense.

In Section 2 a brief review of Daubechies wavelet notation is included and key
references which contain derivations of some necessary parameters are cited. Section
3 details the proposed method of computing the three-term connection coefficients,
included an example calculation. The results are compared with existing coefficients
found in the literature to validate the method. Conclusions are presented in
Section 4.

2. DAUBECHIES WAVELET NOTATION

The Daubechies scaling function is defined by a set of L filter coefficients p;, :
¢ € [0,L — 1], where L is an even integer. The fundamental two-scale equation is
defined as

L—-1
d(x) = pep(2x — 1), (1)

£=0

where ¢(x) is the scaling function with fundamental support over the finite intervals
[0, L —1]. The filter coeflicients py are derived by imposing a number of constraints
given by Daubechies [7].

It is useful to define the n'" derivative of the scaling function as ¢(™)(z), where

d"¢ d 1 0 B
— @(x) = ad)( )(1:), ¢( )(x) = ¢(z). 2)

2

™ (z)
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By amalgamating Equations (1) and (2) and accounting for the conditions in Ref [7],
it is possible to write [6]

L—-1
oM () =2" > pep™ (2w 1), n=01,...,L/2-1. (3)
=0

It is also useful to define the inner product of the scaling function and its derivative
over a bounded interval

If(a) = / " (06 (y — K)dy. (4)

The solutions I'}'(x) are known as the two-term connection coefficients [6]; these
coefficients are required in the next section when determining three-term connection
coefficients. One algorithm for computing these two-term connection coefficients
was derived by Chen et al. [6], with corrections presented by Zhang et al. [13].

3. EVALUATION OF THE THREE-TERM CONNECTION
COEFFICIENTS

The three-term connection coefficients over a bounded domain are defined as
follows [6]

Q) = / " o)™ (y — 6™y — k)dy, (5)

for 0 <m,n < (L/2—1) and j,k,m,n,x € Z, with the following properties

Q??,;"(x)zo for |j],|k|, or |[j — k| > L —1, (6)
QTk"(x) =0 for z—j,2—k, orx <0, (7)
Q" () = Q5L - 1) for x—j,x—k, orz>L—1. (8)

Substituting the two-scale relations (1) and (3) into Equation (5) and performing a
change of variable gives

L—1L-1L—1
Q;nkn (x) = 2m+n-t Z Z Z piapibpicngibfia,2k+icfia (22 —ia). 9)

1q=01%,=0%.=0

Accounting for the constraints provided by Equations (6) to (8), the scaling
equations given in Equation (9) can be written in matrix form as

gU=m=m)Qm.n (1) = SQ™" (), (10)

for x = 1,2,---,L — 1, where S has entries compiled from summing the relevant
triple products p;,p;,p;. as defined in Equation (9). This implies the connection
coefficient vector ™" (x) belongs to the eigenspace corresponding to the eigenvalue

3
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2(1=m=n) from Equation (10). The connection coefficient vector is of the form [6,13]

~ T
Qrn(e) = [ (1), @ (2), QL - )] a1
QT (), QT (), )}T f 1,2, L2
m,n z—L+2 z—L+3 i (@ orr=1,2,--,L— 24
Qm (I) = = o . . T (12)
_QQQL(x)aﬂgiL(I)»"' aQL’_Q(I)} forx =L -1,
I ¢ orx=1,2,---, L —
Q;n,n(x) _ ann L+42 mnjx L+3 - ]:,gf 1 (133
_Qj,l; ( ) Qj 1/+1( ) : 7Qj,,l (I):| fOI'IL':szl7

where v = max(j +2 — L,2 — L), p = min(j + L — 2, L — 2). The vector Q™" (z)
contains (L — 2)® unknowns for # € [1,L — 2] and 3L% — 9L + 7 unknowns for
x = L — 1. Tt can be shown the matrix S has ¢ eigenvalues equal to 2=
where [6]

Z i ifm+n<L/2,

g = (mtn+l)+ (14)

m—+n

3L L+2)L
> (2—2¢)+(2) ifL/)2<m+n<L-2
i=L/2+1

The eigenvectors corresponding to these ¢ eigenvalues describe the solution space of
the scaling equations (10) for a given m and n. In fact, since the scaling equations
depend only on the summation (m + n) and not the specific derivatives, this set of
eigenvectors gives the scaling equation solution space for all three-term connection
coefficients whose derivatives sum to (m + n) [8].

The unique solution for derivatives m and n is found by considering the set
of moment equations which are derived in Ref [7]; the derivation can be found in
Refs. [6,13].

kam" =n! T7(x), (15)

Z FmT () = ml T} (x). (16)

Thus flm”(x) is uniquely described by the intersection of the scaling equation
solution space with that of the moment equations. This implies the solution must be
a linear combination of the g eigenvectors; the participation factors can be computed
from the moment equations as detailed below.

3.1. Example Calculation

Consider the specific case of m = 0,n = 1. Equation (14) states ¢ = 3 eigenvectors
describe the solution space to the scaling equations, thus

Q™" (2) = cru+ oV + c3w, (17)
4
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where u, v and w are the eigenvectors corresponding to the eigenvalue 2(1=m=") = 1
from Equation (10); the constants c¢1, ¢o and ¢ are the respective participation
factors to be determined. Substituting Equation (17) into the moment equations
results in

Y k'uted E'v4esY k'w=nlTl(z) Vjel2-LL-2], (18)
k k k

Yy jrute jMvtesy jmw=mlTix) Vke[2-L,L-2], (19)
J J J

3 7
forx =1,2,...,L — 1. Note there are only g = §L2 — §L + 2 non-trivial equations

described by each (18) and (19) due to the constraints of Equations (6) to (8).
These moment equations can be written in matrix form as

(&1
M<{co p =0, (20)
C3

where M is a rectangular matrix of size 2g x 3, comprised of the summation terms
on the lefthand side of Equations (18) and (19), and b is a vector of length 2¢
composed of the respective righthand side terms. The participation factors are
determined using a pseudoinverse

c=(MTM)"*M7Tb. (21)

This gives a robust “best fit” in a least-squares sense, which allows for
any dependencies between the scaling and moment equations resulting from
accumulated numerical error. The unique solution of the three-term connection
coefficients can thus be found by substituting the participation factors found in
Equation (21) into Equation (17). The algorithm is analogous for different values
of m and n.

—
ol

—
ol

RMS residual error

m value n value

Figure 1. RMS of the Residual Error From all Moment Equations
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The accuracy of the computed Q™" (z) vector is quantified by first calculating
the residual of each moment equation given in Equations (15) and (16); as Q™" (x)
is a linear combination of the eigenvectors from Equation (10), the scaling equations
are automatically satisfied. To allow meaningful comparison of different derivative
combinations, the residuals are normalized by the L2-norm of the righthand-side
of the moment equation. The RMS value of this normalized residual vector is
then calculated to give a scalar measure of the absolute error for a given n and
m combination. This error measure for Daubechies scaling functions (L = 8) at
all allowable derivative combinations is provided in Figure 1. As shown, the error
in Q7" (x) grows with higher derivatives, but even at n,m = 3 the error norm
remains relatively low. As a comparison, the three-term connection coefficients for
L = 6,m = 0,n = 1 published in Chen et al. [6] result in an RMS error norm of
1.55 x 1071°, whereas for the current algorithm it is 1.82 x 107'6. The three-term
connection coefficients are tabulated in the Appendix for comparison.

4. CONCLUSION

Computation of the three-term connection coefficients is necessary when using the
wavelet-Galerkin method to solve differential equations involving nonlinearities or
parameters with variable dependence. Algorithms currently exist to solve for these
coeflicients but they have been found to suffer from ill-conditioning which can result
in erroneous results. The current investigation introduces a novel solution algorithm
which appears to be more numerically robust and comparatively more accurate than
previously published algorithms.
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APPENDIX

Below is a Table containing the 125 three-term connection coefficients for L = 6,
m=0,n=1, Q%! (z), computed using the algorithm described above.

Table 1
Three-Term Connection Coefficients for L =6, m =0, n =1

z i k Q% () x i k Q% () z i k Q% ()

1 —3 —3| —7.15591411x107% 3 1 1| 3.17107026x107*! 5 —1 —2| 8.74622766x10 2
1 —3 —2| 1.35502680x1073 3 1 2| —1.33459578x107" 5 —1 —1|—2.48445901x10"!
1 -3 —1| 7.87118799x107° 3 2 —1| 5.29897817x1073 5 —1 0| 3.13587753x10°!
1 —3 0| —6.14851011x10"* 3 2 0] —1.15661098x10"2 5 —1 1| —1.25272546x10""
1 —2 —3| 5.20897817x1073 3 2 1| 2.54926579x1072 5 —1 2| —-6.17732216x10"°
1 —2 —2|—1.15661098x1072 3 2 2| —1.93594670x10"2 5 —1 3| 3.29019694x107°
1 —2 —1| 2.54926579x1072 4 0 0| 2.53068293x10°° 5 0 —4| 2.45926496x107°
1 —2 0| —1.93594670x10~2 4 0 1| 4.96892129x10~! 5 0 —3| 2.37636417x107%
1 —1 —3| —2.24262187x10"2 4 0 2| 3.29019100x1072 5 0 —2| 9.35483714x10"2
1 —1 —2| 6.06841495%x1072 4 0 3| 1.45424640x1073 5 0 —1|-6.27175506x10""
1 —1 —1| —1.75635286x10"1 4 1 0| —2.48445211x107¢ 5 0 0| 3.61020792x107 %9
1 —1 0| 1.37823004x107! 4 1 1| 3.13595282x107! 5 0 1| 4.96891801x107!
1 0 —3| 8.23609549%x1073 4 1 2| -1.25290082x107! 5 0 2| 3.29026887x1072
1 0 —2| 1.96354133x107! 4 1 3| —6.13510292x10~3 5 0 3| 1.45229718x107%
1 0 —1|—9.14074187x107* 4 2 0| —1.64544140x10"2 5 0 4| 1.52412730x10°°
1 0 0| 7.09481500%x10* 4 2 1| 3.77788872x107 2 5 1 —3|—4.45648096x10*
2 —2 —2|—1.64544140x10"2 4 2 2| -4.67007112x10"2 5 1 —2|-2.07415149x10"2
2 —2 —1| 3.77788872x10" 2 4 2 3| 2.03167757x1072 5 1 —1| 8.74622766x10" 2
2 —2 0| —4.67007112x10~2 4 3 0| -7.15591411x10"* 5 1 0| —2.48445901x10"!
2 —2 1| 2.03167757x10"2 4 3 1| 1.35502680x1073 5 1 1| 3.13587753x107!
2 —1 —2| 8.73555499x10 2 4 3 2| 7.87118799x10°¢ 5 1 2| —1.25272546x107 "
2 —1 —1|—2.49815835x10"* 4 3 3| -6.14851011x10"* 5 1 3|—-6.17732216x10~°
2 —1 0| 3.17107026x10~* 5 —4 —4| —7.62063649x10~" 5 1 4| 3.29019694x107°
2 -1 1| —1.33459578x10"* 5 —4 —3| —4.46399112x10~" 5 2 —2| 1.33940712x10"4
2 0 —2| 9.40317902x10~?2 5 —4 —2| 1.94935669x107° 5 2 —1| 4.92552163x107°
2 0 —1|—-6.20031558x10"" 5 —4 —1| 4.88738554x10”7| | 5 2 0| —1.64513443x1072
2 0 0|—1.91465368x10"2 5 —4 0| —1.22963248%x10~° 5 2 1| 3.78102693x10 2
2 0 1| b5.42767481x107* 5 —3 —4| —3.24555703x10°° 5 2 2| —4.67741857x10"2
2 1 —2|-2.24262187x10"2 5 —3 —3| —7.26148591x10"* 5 2 3| 2.04916885x10”2
2 1 —1| 6.06841495x102 5 —3 —2| 1.25180052x103 5 2 4| —1.35890068x10"%
2 1 0| —1.75635286x10"" 5 —3 —1| 2.49826364x10"% 5 3 —1|—3.24555703x107°
2 1 1| 1.37823004x107! 5 —3 0] —1.18818208x1073 5 3 0| —7.26148591x10"*
3 —1 —1|—2.48445211x10"! 5 —3 1| 4.45159357x10~% 5 3 1| 1.25180052x1073
3 —1 0| 3.13595282x10"* 5 —2 —4| 1.33940712x10~* 5 3 2| 2.49826364x10”*
3 —1 1| -—1.25290082x10"* 5 —2 —3| 4.92552163x107° 5 3 3| -1.18818208x107°
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Table 1

Continued.

T j Q?;(z) T j k Q?i(w) T j k Q?;(z)

3 -1 —6.13510292x 1073 5 —2 —2| —1.64513443x10"2 5 3 4| 4.45159357x10~%
3 0 —6.27152133%x 10 ¢ 5 —2 —1| 3.78102693x10"2 5 4 0| —7.62063649x10""
3 0 2.88213076x 1074 5 —2 0| —4.67741857x1072 5 4 1| —4.46399112x10""
3 0 4.96129851x 107 * 5 —2 1| 2.04916885x1072 5 4 2| 1.94935669x10°
3 0 3.48068749x 102 5 —2 2| —1.35890068x10~* 5 4 3| 4.88738554x10°7
31 8.73555499%x 102 5 —1 —4|—4.45648096x10* 5 4 4] —1.22963248%x10"°
3 1 —2.49815835%x 10 ¢ 5 —1 —3| —2.07415149x10~2




