
ISSN 1925-251X [Print]
Progress in Applied Mathematics ISSN 1925-2528 [Online]
Vol. 7, No. 1, 2014, pp. [20–35] www.cscanada.net
DOI: 10.3968/4825 www.cscanada.org

Differential Invariants and First Integrals of the

System of Two Linear Second-Order Ordinary

Differential Equations

Yu. Yu. Bagderina[a],*

[a]Institute of Mathematics with Computer Center of Russian Academy of Sciences,
Russia.

* Corresponding author.
Address: Institute of Mathematics with Computer Center of Russian Academy
of Sciences, Russia; E-Mail: yulya@mail.rb.ru

Supported by Russian Science Foundation project (14-11-00078).

Received: October 14, 2013 / Accepted: December 20, 2013 / Published online:
January 24, 2014

Abstract: In a recent paper the basis of algebraic invariants of the system
of two linear second-order ordinary differential equations has been found.
Now we obtain the differential invariants for this family of equations, which
depend on the first-order derivatives. It is shown that the first integrals of
such systems can be sought as the functions of the algebraic and differential
invariants of a given system. Differential invariants can be useful also in
constructing the transformation connecting two equivalent systems when
their algebraic invariants are constant.
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1. INTRODUCTION

Systems of linear second-order ordinary differential equations (ODEs) have
attracted a considerable interest since they find many applications in mechanics,
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physics, chemistry. A lot of papers have been devoted to the group classification
of such systems [1]–[7], their equivalence [8,9], the dimension of an admitted Lie
algebra [6,7,10]–[13]. The most studied is the case of the system of two linear
equations of the second order{

x′′ = p1(t)x′ + q1(t)y′ + l1(t)x+m1(t)y,

y′′ = p2(t)y′ + q2(t)x′ + l2(t)y +m2(t)x.
(1.1)

This family of equations is closed with respect to a point change of variables

t̃ = θ(t), x̃ = φ11(t)x+φ12(t)y, ỹ = φ21(t)x+φ22(t)y, det‖φij(t)‖ 6= 0. (1.2)

Note that linear systems often have a nonlinear appearance in applications due
to an unconvenient choice of the coordinates. One can linearize them using, for
example, approaches of [14],[15]. In order to obtain the simplest form which is
possible for a given system, one can use the invariants of linear systems. In [9]
the equivalence problem has been solved for system (1.1) with respect to the
transformations (1.2), which form the group E of the equivalence transformations
of system (1.1). As (absolute) invariants of system (1.1) we name the invariants
of the group E. As relative invariants of system (1.1) we name the invariants of
a subgroup of E. If an invariant I is a function of the variables t, x, y only, then
we name it an algebraic one. If an invariant depends on t, x, y, x′, y′, we name
it a differential one. Differential invariants which depend on the derivatives of x, y
of higher order are not considered, because the derivatives of higher order can be
replaced by virtue of the system (1.1).

In [9] it has been found that system (1.1) can possess the algebraic invariants
of two kinds. Namely, infinitely many invariants Ij(t), j ≥ 1, which depend on
the variable t only, and an invariant I0(t, x, y) having the form of ratio of two
homogeneous polynomials in x, y with the coefficients depending on t. In this set of
the invariants there exists the finite basis. Arbitrary invariant I(t) can be obtained
from the basis invariants by algebraic operations and applying the operator D of
invariant differentiation. The operator D is found from the condition that if Ij(t) is
an invariant of the system (1.1), then DIj is its invariant too. Algebraic invariants
of the form Ij(t), j ≥ 1 obtained in [9] in generic case of the system (1.1) coincide
with the invariants constructed in [8]. Note that the invariants, which depend on x,
y, have not been studied in [8]. Also the degenerate cases of system (1.1) have not
been considered there. They were considered in detail in [9]. Differential invariants
of system (1.1) have not been studied up to now.

In [9] it is shown how one can use the algebraic invariants in solving the
equivalence problem. If two given systems (1.1) and{

x̃′′ = p̃1(t̃)x̃′ + q̃1(t̃)ỹ′ + l̃1(t̃)x̃+ m̃1(t̃)ỹ,

ỹ′′ = p̃2(t̃)ỹ′ + q̃2(t̃)x̃′ + l̃2(t̃)ỹ + m̃2(t̃)x̃,
(1.3)

are equivalent, then all their invariants coincide:

I0(t, x, y) = Ĩ0(t̃, x̃, ỹ), I1(t) = Ĩ1(t̃), I2(t) = Ĩ2(t̃), I3(t) = Ĩ3(t̃), (1.4)

where I0, Ij , j ≥ 1 are the invariants of system (1.1) and Ĩ0, Ĩj , j ≥ 1 are the
invariants of system (1.3). This means that the system of algebraic equalities (1.4)
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is consistent. Then the transformation (1.2) connecting two equivalent systems (1.1)
and (1.3) can be found with the use of the relations (1.4). However, the equalities
(1.4) turn out to be useless when all algebraic invariants of the systems (1.1), (1.3)
are constant.

In a recent paper [16] the scalar second-order ODE with the cubic nonlinearity
in the first-order derivative is considered. It is proposed there to construct the
differential invariants in addition to algebraic ones. Then (1.4) can be supplemented
by the equalities with the differential invariants. They allow one to find the change
of variables in the case of constant algebraic invariants.

So, in Section 2 of the present paper using Lie’s infinitesimal method [17,18]
we obtain the basis of algebraic and differential invariants of system (1.1) and the
operators of invariant differentiation as well. Differential invariants Ji(t, x, y, x

′, y′),
i = 1, 2 have the form of ratio of two homogeneous polynomials in x, y, x′, y′ with
the coefficients depending on t. Furthermore, one of the invariant differentiation
operators, D0, up to a multiplier coincides with the operator

D0 = ∂t+x
′∂x+y′∂y+(p1x

′+q1y
′+l1x+m1y)∂x′ +(p2y

′+q2x
′+l2y+m2x)∂y (1.5)

of total differentiation by virtue of system (1.1).
For the invariants I0(t, x, y), Ji(t, x, y, x

′, y′), i = 1, 2 we show that the derived
invariants D0I0, D0J1, D0J2 are the functions of the invariants I0, J1, J2 and the
algebraic invariants Ij(t), D0Ij , j ≥ 1. In Section 3 we suggest to find the first
integral of the system (1.1) F (t, x, y, x′, y′) = C as a function of algebraic and
differential invariants. Thus, we have either F = F (Ia, I0, J1, J2), where Ia(t) is a
nonconstant algebraic invariant of the system (1.1), or F = F (I0, J1, J2) when all
invariants Ij , j ≥ 1 are constant. This approach allows one to obtain some first
integrals of the system (1.1).

In Section 4 example of apllication of the differential invariants in constructing
the first integrals of linear systems is given. Also we provide the examples of finding
the equivalent cases in the group classification results [1]–[5] when all algebraic
invariants of the systems considered are constant. Concluding remarks are presented
in Section 5.

2. DIFFERENTIAL AND ALGEBRAIC INVARIANTS OF
LINEAR SYSTEM

Here we use the following notation from [9] for the relative invariants of system
(1.1) of the first order

α0 =
1

4
(p′1−p′2)+

1

2
(l2− l1)+

1

8
(p2

2−p2
1), αj =

1

2
q′j−mj−

1

4
(p1 +p2)qj , j = 1, 2,

the second order 
β0 = α′0 + 1

2 (q2α1 − q1α2),

β1 = α′1 + q1α0 + 1
2 (p2 − p1)α1,

β2 = α′2 − q2α0 + 1
2 (p1 − p2)α2,

the third order 
γ0 = β′0 + 1

2 (q2β1 − q1β2)− 2δα0,

γ1 = β′1 + q1β0 + 1
2 (p2 − p1)β1 − 2δα1,

γ2 = β′2 − q2β0 + 1
2 (p1 − p2)β2 − 2δα2,
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where δ = 1
2 (p′1 + p′2 − q1q2)− l1 − l2 − 1

4 (p2
1 + p2

2), the fourth order
ε0 = γ′0 + 1

2 (q2γ1 − q1γ2)− 5δβ0,

ε1 = γ′1 + q1γ0 + 1
2 (p2 − p1)γ1 − 5δβ1,

ε2 = γ′2 − q2γ0 + 1
2 (p1 − p2)γ2 − 5δβ2,

and their combinations

B0 = α1β2 − α2β1, B1 = α2β0 − α0β2, B2 = α0β1 − α1β0,
G0 = α1γ2 + α2γ1 − 5

2β1β2, Γk = αkγk − 5
4β

2
k, k = 0, 1, 2,

G1 = α2γ0 + α0γ2 − 5
2β0β2, e1 = α2ε0 − α0ε2 + 9

2 (β0γ2 − β2γ0),

i0 = α2
0 + α1α2, j4 = y2α1 + 2xyα0 − x2α2, j5 = y2B2 + xyB0 − x2B1,

i1 = B2
0 + 4B1B2, i2 = 2Γ0 +G0, i3 = B0γ0 +B1γ1 +B2γ2,

E2 = α2
2ε2 − 9

2α2β2γ2 + 15
4 β

3
2 , K = α2G1 − 2α0Γ2, j0 = xα2 − yα0,

k0 = K + 3yB2
1j
−1
0 , k1 = 1

3K
2 +B2

1Γ2, k2 = α2
2e1 − 3B1Γ2.

We use also the relative invariants which depend on x′, y′{
δ1 = x′ − 1

2 (p1x+ q1y),

δ2 = y′ − 1
2 (p2y + q2x),

(2.1)

their combinations

j1 = α2δ1 − α0δ2 +
β2j0
4α2

− yB1

2α2
, j2 = yδ1 − xδ2,

j3 = (α0y − α2x)δ1 + (α0x+ α1y)δ2 +
i′0j4
8i0

and the auxiliary operators (1.5) and

D1 = x∂x + y∂y + x′∂x′ + y′∂y′ , D3 = x∂x′ + y∂y′ , D4 = α0∂x′ + α2∂y′ ,

D2 = α0j0

(
∂x +

p1

2
∂x′ +

q2

2
∂y′
)

+ α2j0

(
∂y +

q1

2
∂x′ +

p2

2
∂y′
)

+ (α2δ1 − α0δ2)D4.

The theorem below describes the invariants of the system (1.1) which depend
on t, x, y, x′, y′. Note that the algebraic invariant I0(t, x, y) and the differential
invariants Jk(t, x, y, x′, y′), k = 1, 2, for system (1.1) of the first and the second type
are independent with respect to x, y, x′, y′. This means that the condition

rank

∥∥∥∥ ∂(I0, J1, J2)

∂(x, y, x′, y′)

∥∥∥∥ = 3

hold. But the invariants J1, J2 can be obtained by applying the operator D0 to the
invariant I0 (see (2.5), (2.9)). So, the invariants J1, J2 are not included to the basis
and they are given as additional ones. Similarly, the invariant J1 of system (1.1)
of the third type can be obtained from J2 (see (2.13)) and it is not included to the
basis.

Theorem 1. Every system (1.1) of two linear second-order ODEs belongs to
one of five types of linear systems. For each type of the system the basis of algebraic
and differential invariants, the operators D0, . . . , D4 of invariant differentiation
and additional independent invariants are defined by the following formulas:
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(I) Systems of the first type (i0 6= 0) have four basis invariants

I0 = j5j
−1
4 i
−3/4
0 , I1 = i1i

−5/2
0 , I2 = i2i

−3/2
0 , I3 = i3i

−9/4
0 , (2.2)

D0 = i
−1/4
0 D0, D1 = D1, D4 = i

−1/4
0 [(α0x+ α1y)∂x′ + (α2x− α0y)∂y′ ],

D2 = i
−1/2
0

[
(α0x+ α1y)

(
∂x +

p1

2
∂x′ +

q2

2
∂y′
)

+(α2x− α0y)
(
∂y +

q1

2
∂x′ +

p2

2
∂y′
)

+(α0δ1 + α1δ2)∂x′ + (α2δ1 − α0δ2)∂y′
]
,

D3 = i
1/4
0 D3,

(2.3)

additional invariants are {
J1 = j3j

−1
4 i
−1/4
0 ,

J2 = j2j
−1
4 i

1/4
0 .

(2.4)

Nontrivial action of operators (2.3) on I0, J1, J2 is given by

D0J1 =
1

8
I2 −

9

64
I1 − I0J2 − J2

2 − J2
1 , D0J2 = −1− (J0 + 2J1)J2,

D2I0 = −2J0, D3J1 = 1, D4J2 = 1,

D0I0 = J0

(
2
I3
I1
− I0 − 2J2

)
+

I0
2I1
D0I1, if I1 6= 0,

D0I0 = κI0(M − I0 − 2J2), if I1 = 0, α2 6= 0, B1 6= 0, (2.5)

where J2
0 = I2

0 + 1
4 , M = i

−3/4
0

(
i0Γ2

α2B1
− α2i2

2B1
+

5B1

4α2

)
, κ =

α2B0 − 2α0B1

2
√
i0B1

.

(II) Systems of the second type (i0 = 0, α2 6= 0, B1 6= 0) have three basis
invariants

I0 = k0α
−2/3
2 B

−4/3
1 , I1 = k1α

−4/3
2 B

−8/3
1 , I2 = k2α

−4/3
2 B

−5/3
1 , (2.6)

D0 = α
1/3
2 B

−1/3
1 D0, D1 = D1, D2 = α

−1/3
2 B

−2/3
1 D2,

D3 = α
−1/3
2 B

1/3
1 D3, D4 = j0α

−2/3
2 B

−1/3
1 D4, (2.7)

additional invariants are {
J1 = j1j

−1
0 α

1/3
2 B

−1/3
1 ,

J2 = j2j
−2
0 α

2/3
2 B

1/3
1 .

(2.8)

Nontrivial action of operators (2.7) on I0, J1, J2 is given by

D0I0 = I2 − 5I1 +
1

3
I2
0 − 3J2, D2I0 = 3,

D0J1 =
1

4
I1 −

1

12
I2
0 −

1

3
I0J1 +

3

2
J2 − J2

1 ,

D0J2 = 1 +
1

3
I0J2 − 2J1J2,

D2J1 = −1

2
, D3J1 = 1, D4J2 = −1.

(2.9)
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(III) Systems of the third type (i0 = 0, α2 6= 0, B1 = 0, Γ2 6= 0) have two basis
invariants {

I1 = E2Γ
−3/2
2 ,

J2 = j2j
−2
0

√
Γ2,

(2.10)

D0 = α2Γ
−1/2
2 D0, D1 = D1, D2 = α2Γ−1

2 D2,

D3 = α−1
2

√
Γ2D3, D4 = j0Γ

−1/2
2 D4,

(2.11)

additional invariant is

J1 = j1j
−1
0 α2Γ

−1/2
2 . (2.12)

Nontrivial action of operators (2.11) on J1, J2 is given by

D0J1 =
1

4
− 1

2
I1J1 − J2

1 , D0J2 = 1 +
1

2
I1J2 − 2J1J2,

D3J1 = 1, D4J2 = −1.
(2.13)

(IV) Systems of the fourth type (i0 = 0, α2 6= 0, B1 = 0, Γ2 = 0) have one basis
invariant

J1 = α2j1j2j
−3
0 , (2.14)

D0 = j0j
−1
1 D0, D1 = D1, D2 = j2

0α
−1
2 j−2

1 D2,

D3 = j1j
−1
0 D3, D4 = j2

0α
−1
2 j−1

1 D4. (2.15)

Nontrivial action of operators (2.15) on J1 is given by

D0J1 = 1− 3J1, D3J1 = J1, D4J1 = −1. (2.16)

(V) Systems of the fifth type (α0 = 0, α1 = 0, α2 = 0) are equivalent to the
simplest system x′′ = 0, y′′ = 0.

The proof of this statement is given in Appendix.
Remark. In items (I)–(IV) of Theorem 1 the systems with α2 6= 0 are

considered. Systems with α2 = 0, α1 6= 0 are reduced to this case by a simple
transformation

t̃ = t, x̃ = y, ỹ = x,

while the transformation

t̃ = t, x̃ =
1

2
(x+ y), ỹ =

1

2
(x− y)

reduces similarly the systems with α2 = 0, α1 = 0, α0 6= 0. So, we need not consider
the cases α2 = 0, α1 6= 0 and α2 = 0, α1 = 0, α0 6= 0 separately.

3. FIRST INTEGRALS OF LINEAR SYSTEM

System of two second-order ODEs possesses four independent first integrals

Fi(t, x, y, x
′, y′) = Ci, Ci = const, i = 1, 2, 3, 4.
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Any linear system (1.1) admits Lie symmetry generator X0 = x∂x + y∂y + x′∂x′ +
y′∂y′ . Hence, three first integrals can be sought as a function of its invariants

F

(
t,
y

x
,
x′

x
,
y′

x

)
= C (3.1)

from the condition

D0F = 0 (3.2)

with the operator (1.5). So, in order to find the integral (3.1), we need to solve the
linear homogeneous first-order partial differential equation (PDE). Its characteristic
system consists of three first-order ODEs.

Note that invariants I0, J1, J2 defined by (2.2), (2.4), (2.6), (2.8), (2.10), (2.14)
are the functions of the invariants t, yx−1, x′x−1, y′x−1 of the generator X0. And it
is not difficult to see that the form of the operator D0 in (2.3), (2.7), (2.11), (2.15)
allows us to find the first integral from the condition D0F = 0. Thus, some first
integrals of the system (1.1) can be sought in the form

F (Ia, I0, J1, J2) = C (3.3)

from the condition D0F = 0. Here Ia(t) is a nonconstant algebraic invariant of the
system (1.1) and D0Ia is its invariant too. Expressions for D0I0, D0J1, D0J2 are
given by (2.5), (2.9), (2.13), (2.16) for the corresponding types of the system (1.1).
In general the characteristic system of the equation

D0F ≡ D0Ia
∂F

∂Ia
+D0I0

∂F

∂I0
+D0J1

∂F

∂J1
+D0J2

∂F

∂J2
= 0 (3.4)

consists of three first-order ODEs as for the equation (3.2). However, the cases exist
when the invariant form of the integral (3.3) implies that the number of equations in
the characteristic system of PDE (3.4) reduces. And, therefore, this system becomes
simpler for integration. Let us consider such cases in more detail.

N I.1. For arbitrary system (1.1) of the first type the characteristic system of
PDE (3.4) consists of the equation

(D0Ia)
dJ1

dIa
=

1

8
I2 −

9

64
I1 − I0J2 − J2

2 − J2
1

and the equations

(D0Ia)
dJ2

dIa
= −1− (J0 + 2J1)J2, (D0Ia)

dI0
dIa

= J0

(
2
I3
I1
− I0 − 2J2

)
+
I0
2I1
D0I1

when I1 6= 0, or the equations

(D0Ia)
dJ2

dIa
= −1− (κI0 + 2J1)J2, (D0Ia)

dI0
dIa

= κI0(M − I0 − 2J2)

when I1 = 0, α2 6= 0, B1 6= 0. It can be shown that the condition I1 = 0 implies I3 =
0. In this case the relative invariant i1 becomes i1 = α−2

2 [(α2B0−2α0B1)2−4i0B
2
1 ].

Hence, parameter κ in (2.5) is equal to ±1, when I1 = 0. Below we consider the
cases when the number of equations of the characteristic system can be reduced.
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N I.2. For a system of the first type with the constant invariants I1, I2, I3,
where I1 6= 0, the first integral is sought in the form

F (I0, J1, J2) = C (3.5)

and the corresponding characteristic system consists of two equations

dJ1

dI0
=

9
64I1 − I2/8 + I0J2 + J2

2 + J2
1

J0(I0 + 2J2 − 2I3I
−1
1 )

,
dJ2

dI0
=

1 + (J0 + 2J1)J2

J0(I0 + 2J2 − 2I3I
−1
1 )

.

N I.3. If the system of the first type has the invariants I1 = 0, I2 = const, I3 = 0
and its relative invariants satisfy the conditions α2 6= 0, B1 6= 0, M = const, then
the first integral has the form (3.5) and the corresponding characteristic system
consists of two equations

dJ1

dI0
=
I0J2 + J2

2 + J2
1 − I2/8

κI0(I0 + 2J2 −M)
,

dJ2

dI0
=

1 + (κI0 + 2J1)J2

κI0(I0 + 2J2 −M)
.

N I.4. If the invariants of the system of the first type satisfy the conditions

I1 = 0, I2 6= const, I3 = 0, B0 = 0, B1 = 0, B2 = 0

then we have I0 = 0, D0J1 = I2/8 − J2
2 − J2

1 , D0J2 = −1 − 2J1J2 from (2.5), the
first integral is sought in the form

F (Ia, J1, J2) = C (3.6)

and the characteristic system consists of two equations{
(D0Ia)dJ1

dIa
= 1

8I2 − J
2
2 − J2

1 ,

(D0Ia)dJ2
dIa

= −1− 2J1J2.
(3.7)

Eliminating J1 from equations (3.7) one obtains the second-order ODE

d2J2

dI2
a

=
3

2J2

(
dJ2

dIa

)2

+
1

D0Ia

(
2

J2
− d(D0Ia)

dIa

)
dJ2

dIa
+

1

(D0Ia)2

(
2J3

2 −
I2
4
J2 +

1

2J2

)
.

(3.8)
If we choose such invariant Ia that D0Ia = const 6= 0, then the substitution

J2 = − u

u′D0Ia
, u′ =

du

dIa
(3.9)

reduces (3.8) to the third-order ODE

2u′u′′′ − u′′2 − I2
2(D0Ia)2

u′2 +
4

(D0Ia)4
u2 = 0 (3.10)

in u(Ia), which linearizes on differentiation. Taking into account (3.9), the second
equation (3.7) is solved for

J1 =
D0Ia

2

u′′

u′
. (3.11)

N I.5. If the invariants of the system of the first type satisfy the conditions

I1 = 0, I2 = const, I3 = 0, B0 = 0, B1 = 0, B2 = 0
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then the first integral has the form

F (J1, J2) = C (3.12)

and we have a single characteristic equation, namely, the Abel equation

(1 + 2J1J2)
dJ1

dJ2
= J2

1 + J2
2 −

1

8
I2.

N II.1. For arbitrary system (1.1) of the second type the characteristic system
of PDE (3.4) consists of three equations

(D0Ia)
dI0
dIa

= I2 − 5I1 +
1

3
I2
0 − 3J2, (D0Ia)

dJ1

dIa
= 1 +

1

3
I0J2 − 2J1J2,

(D0Ia)
dJ2

dIa
=

1

4
I1 −

1

12
I2
0 −

1

3
I0J1 +

3

2
J2 − J2

1 .

The number of equations can be reduced in the following case.

N II.2. For a system of the second type with the constant invariants I1, I2 the
first integral is sought in the form (3.5) and the corresponding characteristic system
consists of two equations

dJ1

dI0
=

1 + 1
3I0J2 − 2J1J2

I2 − 5I1 + 1
3I

2
0 − 3J2

,
dJ2

dI0
=

1
4I1 −

1
12I

2
0 − 1

3I0J1 + 3
2J2 − J2

1

I2 − 5I1 + 1
3I

2
0 − 3J2

.

N III.1. For arbitrary system (1.1) of the third type the first integral has the
form (3.6) and the characteristic system consists of two ODEs

(D0Ia)
dJ1

dIa
=

1

4
− 1

2
I1J1 − J2

1 , (D0Ia)
dJ2

dIa
= 1 +

1

2
I1J2 − 2J1J2,

where the first equation can be integrated separately.

N III.2. For a system of the third type with the constant invariant I1 the
first integral is sought in the form (3.12) and we have a single linear characteristic
equation

dJ2

dJ1
=

2 + I1J2 − 4J1J2

1/2− I1J1 − 2J2
1

. (3.13)

N IV. For a system (1.1) of the fourth type the invariant form of the first integral
is given by F (J1) = C. The equality D0F ≡ (1 − 3J1)FJ1 = 0 has only the trivial
solution F ≡ const. But if we suppose 1− 3J1 = 0, then we obtain the relation

Φ ≡ α2j1j2 −
1

3
j3
0 = 0. (3.14)

From the equality D0Φ =
3

2

(
3β2

2α2
+ p2 + q2

α0

α2

)
Φ it follows D0Φ

∣∣∣
Φ=0

= 0 and,

therefore, the relation (3.14) defines an invariant manifold of the system (1.1) of
the fourth type.
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4. APPLICATIONS OF DIFFERENTIAL INVARIANTS

The first two examples below are devoted to the systems with constant algebraic
invariants and to the linear systems of the fourth type which do not possess algebraic
invariants. Of course, these systems are easily integrable. However, they arise in
the group classification of linear systems, when one usually try to eliminate the
equivalent cases. It is shown here how one can use the differential invariants for
solving this problem. The last example illustrates application of the invariants of
linear systems to finding the first integrals.

Example 1. In [2,3,5] the group classification of two linear equations with
constant coefficients has been performed. In [5] the following linear system of the
fourth type

x′′ = 4x′ − 15

4
x, y′′ = b12x+

1

4
y, b12 = const 6= 0 (4.1)

has been found. Let us prove here that it is reducible to a simpler system of the
fourth type

x̃′′ = 0, ỹ′′ = x̃ (4.2)

obtained earlier in [2]. We suppose that systems (4.2), (4.1) are equivalent and
equate the invariant

J1 =
2x′ − 3x

2b12x3
(xy′ − yx′ + 2xy)

of the system (4.1) to the invariant

J̃1 =
x̃′

x̃3
(x̃ỹ′ − ỹx̃′)

of the system (4.2), where we substitute (1.2) and{
x̃′ = 1

θ′ (φ11x
′ + φ12y

′ + φ′11x+ φ′12y),

ỹ′ = 1
θ′ (φ21x

′ + φ22y
′ + φ′21x+ φ′22y).

(4.3)

Equating like powers of x′, y′ in the relation J1 = J̃1 and studying further the
conditions obtained we arrive at

φ12 = 0,

(
φ21

φ11

)′
= 0,

φ′11

φ11
= −3

2
,

φ′22

φ22
=

1

2
, θ′2 = b12

φ22

φ11
,

whence it follows

t̃ = c0et + c1, x̃ = c2xe−3t/2, ỹ = c3xe−3t/2 + c4yet/2,

c0, . . . , c4 = const, c20c2 = b12c4, c0, c2, c4 6= 0. (4.4)

It is readily verified that the change of variables (4.4) transforms (4.1) into (4.2).
Example 2. Consider an autonomous decoupled system obtained in [2,3]

x̃′′ = x̃, ỹ′′ = kỹ, k = const, k 6= 1. (4.5)

It is a system of the first type with the basis invariants

Ĩ0 = 0, Ĩ1 = 0, Ĩ2 =
8(k + 1)

k − 1
, Ĩ3 = 0. (4.6)
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Differential invariants (2.4) of the system (4.5) are given byJ̃1 = ỹx̃′+x̃ỹ′√
2(k−1)x̃ỹ

,

J̃2 = ỹx̃′−x̃ỹ′√
2(k−1)x̃ỹ

.
(4.7)

In [1] the following system has been obtained (see the case I.9.2 there)

x′′ =
1

t2
(c1x+ c2y), y′′ =

1

t2
(c0x− c1y), c0, c1, c2 = const 6= 0. (4.8)

Let ∆ = c0c2 + c21 be nonzero, then (4.8) is a system of the first type with the
invariants

I0 = 0, I1 = 0, I2 =
2√
∆
, I3 = 0, (4.9)

J1 =
t((c1y − c0x)x′ + (c1x+ c2y)y′)

∆1/4(c2y2 + 2c1xy − c0x2)
,

J2 =
∆1/4t(xy′ − yx′)

c2y2 + 2c1xy − c0x2
.

(4.10)

Using the invariants one can find that systems (4.5) and (4.8) are equivalent when√
∆ 6= 1/4. In this case equalities (1.4) in algebraic invariants (4.6), (4.9) of systems

(4.5), (4.8) are consistent. Then from (1.4) one can find the relation

k =
1 + 4

√
∆

1− 4
√

∆
(4.11)

only. In order to find the transformation (1.2) connecting (4.5) and (4.8), we
substitute (1.2), (4.3) into invariants (4.7) and equate them to the corresponding
invariants (4.10). Comparing like powers of x′, y′ in the equalities J1 = J̃1, J2 = J̃2

and equating then the coefficients of like powers of x, y, we obtain a number of
relations. In particular, we have

θ′ =

√
1− 4

√
∆

2t
, φ′ij = −φij

2t
, i, j = 1, 2. (4.12)

Then the remaining relations become

c0(φ11φ22 + φ12φ21) + 2c1φ11φ21 = 0, c0(φ11φ22 − φ12φ21)− 2
√

∆φ11φ21 = 0,

c2(φ11φ22 + φ12φ21)− 2c1φ12φ22 = 0, c2(φ11φ22 − φ12φ21) + 2
√

∆φ12φ22 = 0,

c2φ11φ21 + c0φ12φ22 = 0, c1(φ11φ22 − φ12φ21) +
√

∆(φ11φ22 + φ12φ21) = 0. (4.13)

Integration of (4.12), (4.13) provides the change of variables

t̃ =
1

2

√
1− 4

√
∆ ln t, x̃ =

1√
t

(
c0x− (c1 +

√
∆)y

)
, ỹ =

1√
t

(
(c1 +

√
∆)x+ c2y

)
,

which transforms (4.8) to the system (4.5) with the parameter (4.11).
Example 3. In [19] the wave propagation on free surface of two-phase mixture

has been studied. Solution of the form of damping wave reduces to the equations

(Nx′)′ −Nx = (My′)′ −My, −(Mx′)′ +Mx = (Ny′)′ −Ny (4.14)
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in x(t), y(t), where M(t), N(t) are real functions. If we denote r =
√
M2 +N2,

ϕ = arctan(N/M), Φ = ϕ′′ + ϕ′r′r−1, then (4.14) become{
x′′ = x− r′

r x
′ − ϕ′y′,

y′′ = y − r′

r y
′ + ϕ′x′.

(4.15)

For this system of the first type (when Φ 6= 0) we have

B0 = 0, B1 = 0, B2 = 0, i0 = −Φ2

4
, D0 =

√
2

iΦ
D0, i2 = −1,

I0 = 0, I1 = 0, I2 =
i

Φ3

[
5Φ′2 − 4ΦΦ′′ + 4Φ2

(
ϕ′2 − 2

r′′

r
+
r′2

r2
− 4

)]
, I3 = 0,

J1 =

√
2

iΦ

(
xx′ + yy′

x2 + y2
+
r′

2r
+

Φ′

4Φ

)
, J2 =

√
2i

Φ

(
xy′ − yx′

x2 + y2
− ϕ′

2

)
.

Hence, system (4.15) falls into the case N I.4 described in the previous section.
Let, for instance, the parameters of system (4.15) be given by

r = const 6= 0, ϕ = Φ = λeκt, κ = ±1, λ = const 6= 0. (4.16)

Then for system (4.15), (4.16) we have

D0 =

√
2

iλ
e−κt/2D0, I2 = i

(
4λeκt − 15

λeκt

)
.

If we take Ia = λeκt/2, then

D0Ia = κ

√
λ

2i
, I2 = i

(
4I2
a

λ
− 15λ

I2
a

)
and relations (3.9), (3.11) become

J1 =
κ

2

√
λ

2i

u′′

u′
, J2 = −κ

√
2i

λ

u

u′
. (4.17)

Equation (3.10) takes the form

2u′u′′′ − u′′2 +

(
4I2
a

λ2
− 15

I2
a

)
u′2 − 16

λ2
u2 = 0. (4.18)

Differentiating once we obtain a linear fourth-order ODE

uIV +

(
4I2
a

λ2
− 15

I2
a

)
u′′ +

(
4Ia
λ2

+
15

I3
a

)
u′ − 16

λ2
u = 0

with the general solution

u =
1

I2
a

(
c1sin(I2

a/λ) + c2cos(I2
a/λ) + c3

)
+ c4I

2
a , c1, c2, c3, c4 = const. (4.19)

Substitution of (4.19) into (4.18) leads to the relation

4λ2c4(c3 + λ2c4) + c21 + c22 = 0

31



Differential Invariants and First Integrals of the System of Two Linear
Second-Order Ordinary Differential Equations

whence it follows

c3 = −λ2c4(1 + C2
1 + C2

2 ), C1 =
c1

2λ2c4
, C2 =

c2
2λ2c4

. (4.20)

Function (4.19), (4.20) defines the general solution of ODE (4.18). Substituting it
into (4.17) we obtain the relations

2κ(xy′ − yx′)
ϕ(x2 + y2)

= 1 +
1 + C2

1 + C2
2 − ϕ2 − 2C1sinϕ− 2C2cosϕ

1 + C2
1 + C2

2 + ϕ2 − 2(C2ϕ+ C1)sinϕ+ 2(C1ϕ− C2)cosϕ
,

−κ(xx′ + yy′)

x2 + y2
= 1 +

ϕ2(C1sinϕ+ C2cosϕ− 1)

1 + C2
1 + C2

2 + ϕ2 − 2(C2ϕ+ C1)sinϕ+ 2(C1ϕ− C2)cosϕ
.

Solving them with respect to C1, C2 one can find two first integrals of the system
(4.15), (4.16). They can be supplemented by an integral

x′2 + y′2 − x2 − y2 = C3

easily found from (4.15) when r = const.

5. CONCLUSION

Usually, to solve the equivalence problem for a family of ODEs it is sufficient to
use the algebraic invariants of the family. Here we found the differential invariants
for a system of two linear equations of the second order. Differential invariants are
effective when either all algebraic invariants of the system are identically constant,
or the system is of a degenerate type and does not possess algebraic invariants (as
in Example 1 of the previous section).

Differential invariants find another application in constructing the first integrals.
Using them one can find not more thah three integrals, while the system of
two second-order ODEs has four independent first integrals. In general, the
characteristic system of PDE (3.4) is three-dimensional being not simpler than
that of PDE (3.2). But if we seek the first integral as a function of algebraic and
differential invariants (3.3), then the dimension of the characteristic system of PDE
(3.4) can be reduced. Simultaneously this leads to the reduction of the number of
integrals which can be constructed by this way. All such cases are listed in Section
3. Namely, in the cases N.I.2–N.I.4, N.II.2, N.III.1 one can find two first integrals
of the form (3.5) or (3.6). In the cases N.I.5 and N.III.2 we have one first integral
of the form (3.12) (cf. with the cases of the extension of admitted Lie symmetry
algebra in [13]).
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APPENDIX. PROOF OF THE THEOREM 1

The proof of the statement of the Theorem 1 mainly repeats the proof of the
Theorem 2.1 in [9]. The only difference is that the space of arguments of the
differential invariant I is extended by two variables x′, y′ in comparison with
the arguments of the algebraic invariant. Therefore, the set of independent
algebraic and differential invariants of the system (1.1) is extended by two invariants
Ji = (t, x, y, x′, y′), i = 1, 2, in addition to the algebraic invariants I0(t, x, y), Ij(t)
constructed before in [9]. Differential invariant I is found from the invariance
condition X̃I = 0. Here the operator X of the group E of the equivalence
transformations of system (1.1) found in [9] is extended to x′, y′ by usual
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prolongation formulas [17]

X = τ(t)∂t + [ρ1(t)x+ σ1(t)y]∂x + [ρ2(t)y + σ2(t)x]∂y

+ [ρ′1x+ σ′1y + (ρ1 − τ ′)x′ + σ1y
′]∂x′

+ [ρ′2y + σ′2x+ (ρ2 − τ ′)y′ + σ2x
′]∂y′ .

(6.1)

Relation X̃I = 0, split by functions τ , ρ1, ρ2, σ1, σ2 and their derivatives, again
leads to the system (A.6) from [9]. As is seen from (6.1) only nine operators X2,
. . . , X6, X8, . . . , X11 in the system (A.6) in [9] should be replaced by

X̂2(τ ′) = X2 − x′∂x′ − y′∂y′ ,

X̂3((ρ1 + ρ2)/2) = X3 +
1

2
(x′∂x′ + y′∂y′),

X̂4((ρ1 − ρ2)/2) = X4 +
1

2
(x′∂x′ − y′∂y′),

X̂5(σ1) = X5 + y′∂x′ ,

X̂6(σ2) = X6 + x′∂y′ ,

X̂8(ρ′1) = X8 + x∂x′ ,

X̂9(ρ′2) = X9 + y∂y′ ,

X̂10(σ′1) = X10 + y∂x′ ,

X̂11(σ′2) = X11 + x∂y′ .

The set of functionally independent solutions of such a modified system (A.6)
defines the algebraic and differential invariants (2.1), (2.2) of the system (1.1) in
generic case. And these invariants are given by (2.6), (2.8), (2.10), (2.14) for the
corresponding degenerate types of the system (1.1). Analysis of the modified system
(A.6) is similar to that performed in [9].

Systems of the fifth type possess neither algebraic, nor differential absolute
invariants. Indeed, the relative invariants αi, βi, γi, εi, i = 0, 1, 2, vanish and
six operators (A.9) from [9] act in the space of four variables x, y and δ1, δ2 defined
by (2.1). Therefore, the subsystem of (A.6) with the operators (A.9) in [9] has only
the trivial solution I = const in this case.

The generator (6.1) of the equivalence transformation group E has the form

X = ξ0∂t + ξ1∂x + ξ2∂y + ξ3∂x′ + ξ4∂y′ .

Then, according to [17], the components of an invariant differentiation operator

D = λ0∂t + λ1∂x + λ2∂y + λ3∂x′ + λ4∂y′

satisfy the conditions

Xλi = λ0ξit + λ1ξix + λ2ξiy + λ3ξix′ + λ4ξiy′ , i = 0, . . . , 4. (6.2)

The coefficients ξi in the operator X are defined by (6.1). Equalities (6.2) split by
functions τ , ρ1, ρ2, σ1, σ2 and their derivatives give rise to a system which contains
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the nonhomogeneous equations

X̂2λ0 = λ0, X̂3λ1 = 1
2λ1, X̂4λ1 = 1

2λ1, X̂5λ1 = λ2, X̂8λ1 = xλ0, X̂10λ1 = yλ0,

X̂3λ2 = 1
2λ2, X̂4λ2 = − 1

2λ2, X̂6λ2 = λ1, X̂9λ2 = yλ0, X̂11λ2 = xλ0,

X̂2λ3 = −λ3, X̂3λ3 = 1
2λ3, X̂4λ3 = 1

2λ3, X̂5λ3 = λ4, X̂7λ3 = −x′λ0,

X̂8λ3 = x′λ0 + λ1, X̂10λ3 = y′λ0 + λ2, X12λ3 = xλ0, X14λ3 = yλ0,

X̂2λ4 = −λ4, X̂3λ4 = 1
2λ4, X̂4λ4 = − 1

2λ4, X̂6λ4 = λ3, X̂7λ4 = −y′λ0,

X̂9λ4 = y′λ0 + λ2, X̂11λ4 = x′λ0 + λ1, X13λ4 = yλ0, X15λ4 = xλ0,

the remaining equations of the system being homogeneous. This system has five
independent solutions which define the operators Di, i = 0, . . . , 4, given by (2.3),
(2.7), (2.11), (2.15) for the corresponding types of the system (1.1). Relations (2.5),
(2.9), (2.13), (2.16) are found by direct calculation, i.e. applying the operators Di,
i = 0, . . . , 4, to the corresponding invariants I0, J1, J2.
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