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Abstract: We show that if v is a regular semi-classical form (linear
functional), then the form u defined by (z — 72)ou = —\v and o(x — 7)u =0
where ou is the even part of u, is also regular and semi-classical form for
every complex A except for a discrete set of numbers depending on v. We give
explicitly the recurrence coefficients and the structure relation coefficients of
the orthogonal polynomials sequence associated with u and the class of the
form u knowing that of v. We conclude with illustrative examples.
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1. INTRODUCTION

Semi-classical orthogonal polynomials (O.P) were introduced in [14]. They are
naturel generalization of the classical polynomials (Hermite, Laguerre, Jacobi and
Bessel). Maroni [8,10] has worked on the linear form of moments and has given
a unified theory of this kind of polynomials. The form w is called semi-classical
form if its formal Stieltjes function S(u)(z) satisfies the Riccati differential equation
®(2)S (u)(z) = Co(2)S(u)(z) + Do(z), where ® # 0,Co and Dy are polynomials.
In [5,7], the authors determine all the semi-classical monic orthogonal
polynomials sequence (MOPS) of class one satisfying a three terms recurrence
relation with 8, = (=1)"7, n > 0, 7 € C — {0}. See also [1] for a special case.
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The whole idea of the following work is to build a new construction process of
semi-classical form, which has not yet been treated in the literature on semi-classical
polynomials. The problem we tackle is as follows.

We study the form u, fulfilling

(z—7hou=—=Xv, A#0, (wans1=7(u)2m,

where ou is the even part of u, 7 € C and v is a given semi-classical form.

This paper is arranged in sections: The first provides a focus on the preliminary
results and notations used in the sequel. We will also give the regularity condition
and the coefficients of the three-term recurrence relation satisfied by the new family
of O.P. In the second, we compute the exact class of the semi-classical form obtained
by the above modification and the structure relation of the O.P. sequence relatively
to the form u will follow. In the final section, we apply our results to some
examples. The regular linear functional found in the examples are semi-classical
linear functional of class § € {1,2} and we present their integral representations.

Let P be the vector space of polynomials with coefficients in C and let P’ be its
dual. We denote by (v, f) the action of v € P’ on f € P. In particular, we denote

by (v)y := (v,2™),n > 0, the moments of v. For any form v and any polynomial h
let Dv =1, hv, §., and (x — ¢)~1v be the forms defined by:

W, == f), (v f)=(vhf), (df):=f(c)
and
<(x — c)_lv,f> = (v,0.f),
f(@) — fle)

T —

where (0.f)(z) =
Then, it is straightforward to prove that for f € P and v € P/, we have

(z = o)7 ((z = e)v) = v — (v)od, (1)

(z —c)((z — ) tu) = v. (2)

Let us define the operator o : P — P by (of)(x) := f(x?). Then, we define the
even part ov of v by (ov, f) := (v,0f).
Therefore, we have [6, 9]

,ceC, feP.

f(@)(ov) = a(f(z?)v), 3)
(00)n = (V)2n, n=>0. (4)

The form v will be called regular if we can associate with it a polynomial sequence
{Sn}n>0 (deg(S,) < n ) such that

<U7 SnSm> = rn(sn,nfu n,m > 0> Tn 7é Oa n> 0.

Then deg(S,,) =n, n >0, and we can always suppose each S,, monic (i.e. S, (z) =
™ 4 ---). The sequence {Sy,}n>0 is said to be orthogonal with respect to v. It is
a very well known fact that the sequence {5, },>0 satisfies the recurrence relation
(see7 for instance, the monograph by Chihara [6])

Sn+2(x)
Sl (CE)

& —&nt1)Sn41(2) = pp+15u(x), n >0,
:L‘—fo, S()({L‘) = 1,
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with (fmpnﬂ) € CxC—{0}, n >0, by convention we set py = (v)g = 1.

In this case, let {Sy(Ll) }n>0 be the associated sequence of first kind for the sequence
{Sn}n>0 satisfying the three-term recurrence relation [6]
1 1
Sute(®) = (@ = €nr2) 831 (1) = pny2SP (@), 020,

6
SV@)y=z-6, SM@) =1, (8N (=) =0). ©)

Another important representation of S5 is, (see [6])

Sny1(z) = Sny1(Q)
r—(

Also, let {S,(.,t)}n>0 be co-recursive polynomials for the sequence {Sy},>0
satisfying [6]

S (z) = (v, ,n>0. (7)
{ )

S, 1) = Su(x) — pSL”

n—1»

n > 0. (8)

We recall that a form v is called symmetric if (v)2,+1 = 0, n > 0. The conditions
(v)2n+1 = 0, n > 0 are equivalent to the fact the corresponding MOPS {5, }n>0
satisfies the recurrence relation (5) with &, =0, n > 0 [6].

Now let v be a regular, normalized form (i.e. (v)g = 1) and {S,},>0 be its
corresponding sequence of polynomials. For a 7 € C and A € C*, we can define a
new form u as following:

(Wantz = 72 (W)2n = =A(V)n; (Wans1 =T(W2n, (Wo=1, n>0.  (9)
Equivalently,
(x —1%)ou = —v, o((z—7)u) =0. (10)
From (1) and (10), we have
ou= Nz -7 v+ 5. (11)
Remarks.
i) (10) is equivalent to
(2% — %) u = —w, (12)

where the form w defined by
ow=v, o(r—T1)w=0.

Notice that w is not necessarily a regular form in the problem understudy.
In [2], the authors have solved where w is regular and 7 = 0 and in [3], the
problem (12) is solved when 7 # 0 and w is regular.

ii) The case 7 = 0 is treated in [13], so henceforth we assume 7 # 0.
Proposition 1. The form u is regular if and only if A # \,,n > 0 where

Sn+1(7—2)

)\O = 07 A’I’L 1=
- ST(LI)(TQ)

,n>0. (13)
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To prove the above proposition, we need the following lemmas:

Lemma 2. [9] The form u defined by (10) is reqular if and only if ou and (x—72)ou
are reqular.

Proof of Proposition 1. We have u is defined by (10). Then, according to Lemma
2, u is regular if and only if (x — 72)ou and ou are regular. But (z — 72)ou = —\v
is regular since A # 0 and v is regular. So u is regular if and only if cu = —A(x —
72)7lov + 8,2 is regular. Or, {S,},>0 is the corresponding orthogonal sequence to
v, and it was shown in [11] that ou = —\(z — 72)"'v + §,2 is regular if and only if
A#0, and S,(72,)\) # 0,n > 0. Then we deduce the desired result.

When v is regular let {Z,},>0 be its corresponding sequence of polynomials
satisfying the recurrence relation

Znsa(2) = (2 = ()" ') Znsa (@) = Y1 Zn(z), 020,

14
Zi(x)=x—71, Zp(z)=1. (14)

Let us consider its quadratic decomposition [6, 9]:
Zon(2) = Po(2?),  Zopy1(x) = (x — 7)Rp(2?). (15)

The sequences {P,},>0 and {R, },>0 are respectively orthogonal with respect to
ou and (z — 72)ou.
From (10), we have

R.(z) = S,(z), n>0. (16)
Proposition 3. We may write
Y1 ==A Vond2 = Gny Yonts = PZ;A’ n =0, (17)
where S (72 )
an:—ﬁ, n > 0. (18)

For the proof, we need the following lemmas:

Lemma 4. [4] We have
Z3)(x) = Ro(2%, ), Z4)1(2) = (z + )PP (z?), n>0. (19)

Proof of Proposition 3. Using (10) and the condition (u, Zs) = 0, we obtain
Y1 = =\
From (6) and (14) where n — 2n and taking (16) and (19) into account, we get

Sut1 (22, —m) = (x — 7)Z50) 1 () — Yons2Sn (22, —m) -

Substituting « by 7 in the above equation, we obtain vsy, 412 = ay,.
From (14), we have

<’LL, Z§n+2> <’LL, Z§n+3> _ <'LL, ZQ2n+3>

Y2n+272n+3 = = . (20)
(u, 23 410) (w Z3040) (W, 23,44)
Using (5), (10) and (15) — (16), Equation (20) becomes
Y2n4+272n+3 = Pn+1; (21)
then we deduce 79,43 = Prtl .
a

n
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We suppose that the form v has the following integral representation:
+00 +oo
(v, f) = V() f(z)dz, f € P,with (v)o = (v, f) = V(x)de

0 0

where V' is a locally integrable function with rapid decay and continuous at the

point z = 72.

It is obvious that
flw) = fo(a®) +af°(a?), f€P.
Therefore,
(u, f(2)) = (u, f*(%) + 7f(2?)) = (ou, f*(2) + 7f°(2)),

since u satisfies (10).
Using (11) and taking into account that f¢(72) + 7f°(72) = f(7), we obtain

oy = s {ror [ )
oo V() (22)
AP [ @) + 7))
where
P ) = i /_OO st [ pa)

and x[q,5 denotes the characteristic function of the interval [a,b], i.e. x[q4(7) =1
when z € [a,b] and zero otherwise.

Using the fact that f¢(x) = w and f°(z) = %j;m for x > 0
and making the change of variables t = \/z, we get

too - —+00 2
P/ 4 )2X[o+oo[( Y(f€+7f0)(x)dx P/ Vt) X[o.+o0[(8) f(£)dE

_ o
+P/

Inserting the last equation into (22), we get after a change variables in the obtained
equation

X[0,400[ (t) f(—1)dt.

+oo
wr) = 1o {10ap [ o o)
+o0 2
wp [ gorwa (23)

+oo 2
p [T s

e
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2. THE SEMI-CLASSICAL CASE

Let us recall that a form v is called semi-classical when it is regular and satisfies a
linear non-homogeneous differential equation [10]

®(2)5" (v)(2) = Co(2)S(v)(2) + Do(2), (24)

where ® monic, Cy and Dy are polynomials with

Sy = -3 W, (25)
n>0
and
Do(z) = —(v8o®) () + (v8oCo) (). (26)

It was shown in [10] that equation (24) is equivalent to
(®(x)v) + W(z)v =0 (27)
with
U(x) = —@'(z) - Co(x). (28)
The triple (®,Cy, Dg) of the differential equation is not unique, then (24) can

simplified if and only if there exists a root ¢ of ® such that Cy(c) = 0 and Dg(c) = 0.
Then v fulfils the differential equation

(0:2)(2)S" (v)(2) = (6.Co)(2)S (v)(2) + (6 Do)(2).

We call the class of the linear form v, the minimum value of the integer
max (deg(®) — 2,deg(Cp) — 1) for all triples satisfying (24).
The class of the semi-classical form v is s = max (deg(®) — 2, deg(Cp) — 1) if and
only if the following condition is satisfied [§]

[T (Co(e)l + 1Do(e))) # 0, (29)

cEZ

where Z denotes the set of zeros of .

The corresponding orthogonal sequence {Sy,}n>0 is also called semi-classical of
class s.

The semi-classical character is invariant by shifting. Indeed, the shifted form
0 = (hg-10t_p)v, a € C— {0}, b € C satisfies

D(2)5"(9)(2) = Co(2)S () (2) + Do(2), (30)

with A X
Q(z) = a_k‘l)(az +b), Co(z) = al_kCo(az +b),

Do(2) = a*> *Dy(az +b), k = deg(®).
The forms ¢,v (translation of v) and h,v (dilation of v) are defined by
(tov, ) := (v, flz + b)), (hav, f) = (v, f(az)), fEP.
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The sequence {Sn(x) = a "Sp(az + b)}n>0 is orthogonal with respect to ¢ and
fulfils (5) with
fn - b pn+1

c =20~ 5. =22 A > 0. 31
f a Pn+1 a2 n =z ()

In the sequel the form v will be supposed semi-classical linear form of class s
satisfying (24) and (27) and using a dilation in the variable 7, we can take him
equal to one.

Proposition 5. For every A € C — {0} such that S,,(1,\) # 0,n > 0, the form u
defined by (10) is regular and semi-classical. It satisfies

D(2)S' (u)(2) = Co(2)S(u)(2) + Do(2), (32)

where

Kt

(Z) = (2 = 1)(2?%),
Co(z) = 22(z — 1)Cy(2?) — B(2?), (33)
Dy(z —2z()\D0(z2) - 00(22)),

) =
and u is of class § such that § < 2s + 3.
Proof. From (10) and (25), we have
S()(z%) = =2z —1)S(u)(z) — AL (34)

Make a change of variable z — 22 in (24), multiply by —2\z and substitute
(34) in the obtained equation, we get (32) — (33).

Then, deg(®) < 2s + 5 and deg(Co) <2s+4.

Thus, 5 = max(deg(®) — 2, deg(Cy) — 1) < 25+ 3.

As an immediate consequence of (32) — (33), the form u satisfies the functional
equation
(Pu) + Tu =0, (35)

where ® is the polynomial defined by (33) and
U(z) = =& () - Co(z) = 2x(z — 1)W(a?). (36)
Proposition 6. The class of u depends only on the zeros & =0 and x =1 of .

Proof. Since v is a semi-classical form of class s, S(v)(z) satisfies (24), where the
polynomials ®, Cp and Dy are coprime. Let @, Cy and Dy be as in Proposition 5.
Let d be a zero of @ different from 0 and 1, this implies that ®(d?) = 0. We know
that |Co(d2)| + |Do(d2)| #0

i) if Cy(d?) # 0, then Co(d) # 0,

i) if Co(d?) = 0, then Dy(d) # 0, whence |Co(d)| + | Do(d)| # 0.

Concerning the class of u, we have the following result (see Proposition 8). But
first, let us this technical lemma.
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Lemma 7. Let X(z) = Co(z) — ADo(2) and Y (z) = Co(z) — ®'(2), where the
polynomials ®, Cy and Dq are defined in (24). We have the following properties.
Ry. The equation (32) — (33) is irreducible in 0 if and only if ®(0) # 0.

Ry. The equation (32) — (33) is divisible by z but not by 2% if and only if ®(0) = 0.
R3. The equation (32) — (33) is irreducible in 1 if and only if

(@(1), X(1)) # (0,0).
Ry. The equation (32) — (33) is divisible by z — 1 and not by (z — 1)? if and only if
(@(1), X (1)) = (0,0) and (X '(1),Y (1)) # (0,0).
Rs. The equation (32) — (33) is divisible by (z—1)? and not by (z—1)3 if and only if
(@(1), X (1)) = (X' (1), Y (1)) = (0,0).

Proof. From (33), we have ®(0) = —®(0). So by virtue of (29), we get R;.
Now, if ®(0) = 0, the equation (32) — (33) is divisible by z according to (29).
Thus S(u)(z) satisfies (32) with

B(2) = 2(z — 1)(60®) (%),
Co(z) = 2(z — 1)C(2%) — 2(6p®)(2?), (37)
Do(z) = 200(22) - 2)\D0(22)

Then, Co(0) = —Cy(0). If Cy(0) = 0, thus the equation (32) — (37) is irreducible
in 0. If Cy(0) = 0, so from (37), we obtain Dy(0) = —2XDy(0) # 0 since v is
semi-classical form of class s and so satisfies (29). Therefore, we deduce Rs.

From (33), we get Co(1) = —®(1) and Dy(1) = 2X(1).
We can deduce that [Co(1)| + [Do(1)| # 0 if and only if (®(1), X (1)) # (0,0). Thus
R3 ib proved.

If (®(1),X(1)) = (0,0), then the equation (32) — (33) can be divided by z — 1
according to (29). In this case, S(u)(z) satisfies (32) with
®(2) = 0(2%),
Co(2) = 22C0(2%) — (2 + 1)(6:9)(2?), (38)
Dy(z) = 2Co(2?) — 2ADyg(2?) + 2(2 + 1) (61(Co — ADy)) (22).
Substituting z by 1 in (38), we obtain Cy(1) = Y(1) and Do(1) = X (1). Then

’

(32) — (38) is irreducible in 1 if and only if (X (1),
If (X'(1),Y (1)) # (0,0), then the equation (32) —
according to (29). Therefore S(u)(z) satisfies (32) w
®(2) = (2 +1)(0:9)(=%),
CN’Q(Z) = 260(22) + 2(2’ + 1) (01 (C() — 91‘1’)) (2:2) - (91‘1’)(22), (39)
Do(z) = —2(z +2)(61(ADg — Cp)) (22) — 4(63(ADy — Cp)) (2?).

)) # (0,0). Hence Rjy.
38) can be divided by z — 1
ith

Y(1
(

From the above equation, we have ®(1) = 2& (1) = 0. If &' (1) = 0, then from
the condition Y(1) = 0 we obtain Cy(1) = 0. Thus from the last result and the
condition X (1) = 0, we get Dy(1) = 0. Impossible, since v is semi-classical form of
class s and so satisfies (29). Thus Rs is proved.
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Proposition 8. Under the conditions of Proposition 5, for the class of u, we have
the two different cases:

1) (0) £ 0.

i) §=2s+3if (2(1),X(1)) # (0,
i) §=2s+2 if (®(1), X(1)) = (0 (
iii) 5 =2s+1 i (B(1), X(1)) = (V(1), X (1)) = (0,0).

2) ®(0) = 0.
i) 5= 25 +2 if (®(1), X (1)) # (0,0). ,
i) 5 = 25+ 1if (8(1), X(1)) = (0,0) and (Y (1), X' (1)) £ (0,0).
iii) 5 = 2s if (2(1), X (1)) = (V(1), X (1)) = (0,0).

Proof. From Proposition 6, the class of u depends only on the zeros 0 and 1.
For the zero 0 we consider the following situations:

A) ®(0) # 0. In this case the equation (32) — (33) is irreducible in 0 according
to R;. But what about the zero 17
We will analyze the following cases:
i) (®(1),X(1)) # (0,0), the equation (32)—(33) is irreducible in 1 according
to Rs. Then (32) — (33) is irreducible and § = 2s + 3. Thus we proved
1) 1).
ii) (®(1),X(1)) = (0,0) and (Y (1), X'(1)) # (0,0).
From Ry., (32) — (33) is divisible by z — 1 but not by (z — 1) and thus the

order of the class of u decreases in one unit. In fact, S(u)(z) satisfies the
irreducible equation (32) — (38) and then § = 2s+ 2 and 1) ii) is also proved.

/

i) (8(1), X (1) = (Y(1), X (1)) = (0,0).

From Rj., (32) — (33) is divisible by (2 — 1)? but not by (2 — 1)® and thus
the order of the class of u decreases in two units. In fact, S(u)(z) satisfies the
irreducible equation (32) — (39) and then § = 2s + 1. Thus 1) iii) is proved.

B) ®(0) # 0. In this condition, (32)—(33) is divisible by z but not by 22 according
to Ro. But what about the zero 17

We have the three following cases:
i) (®(1),X(1)) # (0,0), the equation (32)—(33) is irreducible in 1 according

to R3. Then S(u)(z) satisfies the irreducible equation (32) — (37) and
then § = 2s + 2. Thus we proved 2) i).

i) (®(1),X(1)) = (0,0) and (Y(1), X (1)) # (0,0).

From Ry., (32) — (33) is divisible by z — 1 but not by (z — 1)? and thus the
order of the class of u decreases in one unit. In fact, S(u)(z) satisfies the
irreducible Equation (32) with

O(2) = 2(60®)(2%),
Co(z) = 2Co(2%) — (60®)(2%) — (2 + 1) (6061 ®)(2%), (40)
Dy(2) = —2(z + 1) (61 (ADo — C9)) (7).
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Thus § = 2s + 1 and 2) ii) is proved.
iif) (®(1), X (1)) = (Y(1), X (1)) = (0,0).
From Rs., (32) — (33) is divisible by (2 —1)? but not by (z — 1)3. So, S(u)(2)
satisfies the irreducible Equation (32) with
®(2) = (2 + 1)(00612)(2%) + (60®) (=),
Co(2) = 2(z + 1) (61 (Co — 001 ®) ) (2*) — (2 + 2) (6001 ®)(z7), (41)
D(](Z) = —2(01(>\D0 - C()))(Z2) - 4(2 + 1)(9%()\D0 - Co)) (22)

Therefore § = 2s and 2) iii) is also proved.

Note that the sequence of orthogonal polynomials (OPS) relatively to a semi-
classical form has a structure relation (written in a compact form)[10]. Then, if
we consider that the form v is semi-classical, its OPS {5, },,>0 fulfils the following
structure relation:

©(2)8)41(2) = 5 (Cns1(@) = Co(@)) Snt1(2) = pr1Dnsa (¥)Sn(x), 1 >0, (42)

with

N =

Chni1(x) = =Cp(x) + 2(x — &) Dn(x), n >0,
Pr1Dny1(2) = =@(2) + ppDp-1(z) = (¥ = £&)Cn(2) (43)
+ (I - én)an(x); n = Oa
where @, Co(z) and Dg(x) are the same polynomials as in (24); &,,p, are the
coefficients of the three term recurrence relation (5). Notice that D_;j(xz) =
0,deg Cp, < s+ 1 and deg D,, < s,n >0 [10].
According to Proposition 5, the form v is also semi-classical and its OPS {Z,, },,>0

satisfies a structure relation. In general, {Z,, },,>¢ fulfils

B(@)Z)1(x) = 2 (Coir (@)~ Co(w)) Zuir (8) — Yo Dy () Zu(x). n > 0, (44)
with _
n+1( )=— (CU)"’Q(:C_(_ )")Dn (z )7 n =0,
Yn+1Dn41(2) = =0(@) + 7uDn-1(2) = (z — (=1)")C(2) (45)

+ (z— (—1)")2Dn(x), n >0,

where ® , Cy(z) and Dy(z) are the same polynomials as in Equation (32).
We are going to establish the expression of C,, and D,,, n > 0 in terms of those
of the sequence {5, }»>0.

Proposition 9. The sequence {Z,}n>0 fulfils (44) with (for n >0)

Cons1(z) = ®(x?) 4 2x(z — 1)Cp (2?) 4 4yopp12(z — 1) Dy (22),
. ) ) (46)
Dopyi1(x) = 2x(x — 1)° D, (2%).

{ Conta(w) = =D(2*) + 22(x — 1)Cpa (2°) + 4a(z — 1)y2nr2Dn(@?), (47)
Doni2(2) = 2092n42Dn (2?) + 2072043 Dp i1 (22) + 22Ch 4 (27).
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Co(z) and Dy(x) are given by (33) and 4,1 by (17).

Proof. Change ¥ — z2, n — n — 1 in (42) and multiply by 2z(z — 1)? we obtain
by taking (15) — (16) into account,

(2 = 1)®(2) Ziy () = {x(x ~1)(Cuonale) - Coa) ) + ¢<x2>}22n+3<x>
—2pn12(x — 1) Dpy1 () Zop i1 (x), n > 0.

Using (14) and (21) where n — 2n, the last equation becomes
B(2)Ziy () = {m = 1)(Cuna () = Cola?) + 21(z = DnsaDpia(a?))

+ (I’(QL‘Q)}ZQn_HJ,(x) — 2’}/2n+3$(l‘ - 1)2Dn+1($2)22n+2($), n Z 0.

From (44) and the above equation, we have for n > 0

{ Conra(z) — Co(x)
2

— Xn+1($)} Zon+3(T) = Yant3 {D2n+3 - Yn+1($)} Zon+2(x),

with for n >0

X, (z) = (Cu(2®) = Co(2?) + 2v2n41 D0 (2%)) z(z — 1) + (),
Y, (z) = 2z(z — 1)2D,, (2?).

Zon+s and Za, 12 have no common zeros, then Zs, 13 divides Y,,11(x) — ﬁ2n+3(x),
which is a polynomial of degree at most equal to 2s + 3. Then we have necessarily
Ynt1(x) — Dapys(z) =0 for n > s, and also

_ Conti(x) — Co(x)
5 ,

X, (x) n > s.

Therefore,
C'Qn+3(x) =2X,41(2) + C’o(x) and ﬁ2n+3 =Yot1(z), n>s.

Then, by (33), we get (46) for n > s.

By virtue of the recurrence relation (43) and (33), we can easily prove by
induction that the system (46) is valid for 0 < n < s. Hence (46) is valid for
n > 0.

After a derivation of (14) where n — 2n + 1 multiplying by (x — 1)®(2?) and
using (44), we obtain

' Con Yo/
(ZC _ 1)2<I>(:v2)Z2n+2(ZE) — MZQ,,H{&(:C)
— Yant3Dont3(2) Zansa(x) — (x — 1)®(2?) Zany2(2)
Coni1(z) — Co()
2
58

+72n+2{ Zon+1(z) — ’an+1D2n+1($)Z2n($)}.
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Applying the recurrence relation (14), we get

(z — 1)2¢($2)Z;n+2(1’) = {(w _ 1)M

~ YantsDansa(@) = (@ = 1)O(@?) } Zansa(a)

{02n+3($) — Conta(x)
2

Now, using (44) and taking into account the fact that Zs,o(x) and Zs,11(z) are

coprime, we get from the last equation after simplification by  — 1 (47) for n > s.

Finally, by virtu of the recurrence relation (43) and (46) with n = 0, we can easily

prove by induction that the system (47) is valid for 0 < n < s.

+ Yon+42 D2n+1 (z)

= Y2n+2 + (z + 1)Dany1 ($)}Zzn+1(x).

3. ILLUSTRATIVE EXAMPLES

(1) We study the problem (10), with v := L(o) where £(o) is the Laguerre form.
This form has the following integral representation [10]

+oo
(v, f) = 1 ] / x%e” " f(x)dz, R(x) > -1, f€P. (48)

I(x+1) Jo
Thus, using (23), we obtain the following integral representation of u

—x

(u, ) = f(l){l AP / ()

> (49)
0 +oo p2x -z
+ ?\/ z)dx — ?\P/ X[0,400[ () f(z)d2.

o -1

The form v is classical (semi-classical of class s = 0), it satisfies (24) and (27)
with [10]

O(z)=w, V(r)=z—-a-1, (50)
Cp(x)=—z+2n+«, D,(x)=-1,n>0.
The sequence {Sy, }n>o fulfils (5) with [6]
En=2n+oa+1, ppyi=Mm+1)n+a+1), n>0. (51)
The regularity condition is @ # —n, n > 1.
First, we study the regularity of the form u.
From (7) and (2.11) in [6], we have for n > 0
Z DT (n+1D0(n+ a+ 1) (52)
r k+1 (n—k+1)(a+k+1)
and
n+1 k
P(n+2)I'(n+ a+2)
S(l) 1) = n+1 ( ) br 53
n ()= (=1 ZFk+1)F(n—k+1)F(o¢+k+1)k1(a)’ (53)
where
T(ax+k+1)
b_ =0.
kz=o Tary @ 1

59



A Class of Non-Symmetric Semi-Classical Linear Forms

By virtue of (8) and (52) — (53), we deduce
Sp(L,A) = (=1)"T(n+ I'(n + o+ D)ep(x,A), n >0, (54)
where

(=1)*(1 =M1 (@) .
Fk+1)I'(n—k+1)I(x+k+1) -

(o) =
k=

0

Then, u is regular for every A # 0 such that ¢, (a,A) # 0, n > 0.
(18) and (54) give

A
an=Mm+1)(n+ o+ 1)%, n > 0. (55)
Therefore, with (17), we obtain for n > 0
Y1 = 77\7
Cn+1((xa )\)
n = 1 1) —————=,
Yoni2 = (n+1)(n+a+1) en (N (56)
_ cnle, }\)
Yonts = Cn+1(067 }\) .

Taking into account that the form v is semi-classical and by virtue of Proposition
5, Proposition 8 and (50), the form w is semi-classical of class § = 2 and fulfils (32)
and (35) with

{cﬁ(x) =z(z—1), U(z)=(r—1)2z>—2x—1), 57

Co(z) = —=22° + 22% + 20 — )& — 2, Do(x) = 2(—2® + x + A).
Now, we are going the elements of the structure relation of the sequence {Z,, },,>0.

Co(z) = —22° + 22 + (200 — 1)z — 20,
Ci(z) = 2(x — 1)(—2% 4+ < + 2\) +

Conyolx) =2(z — 1)<— P42t o+2-2n+1)(n+ o+ 1)071“(0(’7\)) -z,

cn (o A)

) cn (o, A
o) ===ty 22 N
Do(z) = 2(—2” + a4+ A),

D2n+1(I) =-2(z - 1)2,

~ . A cn(onA)
Dopiy = —222 42 1— 1 py e 2) : '
2n+4-2 x° + (n+oc+ (n+Din+et1) cn (o A) ent1(0A)

(2) We study the problem (10), with v := hyiom1J (e, 8) where J(«, 3) is the Jacobi

form. This form has the following integral representation [10]

(0.) = o ED s [ a1 ) (oo, (), (B > 1, 1 € P (59)
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Thus, using (23), we obtain the following integral representation of u

B a4+ 5+ 2) ! o _
(u, f) 7}\11(0(—1—1)11(54—1) /715gnx|x|2 (1—:62)6 Yo+ 1) f(z)de

(59)
1
+ 1A ), @) > -1, %) >0, fe P
The form v is classical, it satisfies (24) and (27) with [10]
O(z)=z(x—-1), V(z)=—-(a+F+2)x+a+1,
(n+ o) (x+f)
= (2 -n—- — = 60
Cnl@) = @n+ ot flz—n— 5 == 5= (60)
Dy(z)=2n+oa+5+1, n>0.
The sequence {Sy, }n>o fulfils (5) with [6]
o = #}iz’ En1 = %((2n+a+ﬁ+2;(gn+a+5+4) +1),n =0, (61)
_ () (ntatr (Bt (kB S
Prtl = @ntoatfrl)@ntoatBfi2)?@ntatpras) <Y
The regularity conditions are «, 8 # —n, «+ 8 # —n, n > 1.
Using (5) and (61), we get
FB+n+1)I(c+B8+n+1)
Sn(1) = . n>0. 62
W= TG ir+prmsy * " (62)
From (6) and (61), we obtain by induction
1
S00) = e (). nzo (63)

o+ [ +2n+3)

where for n > 0

l(l“(cc+n+2)1"(oc+ﬁ+n+2)_F(oc+5+1)F(n+1)1“(6+n+2)) X0

1o F(x+1) L(B+1)
dn((xa ﬂ): n 1 1
H”+UH"+B+mZ;%+1+ﬁ+k+1%“:&

By virtue of (8) and (62) — (63), we deduce

FB+n+1)I(x+B8+n+1)

Sa(LA) = T(3+ 1)l (e+ B+ 2n + 1)

en(N, e, 8), n>0. (64)

where for n > 0

(c+B+1)I(B+1)
B+n+1DT(n+o+B+1)

en(?\7 0(7ﬁ) =1- >\F dnfl(ocvﬁ)a d*l((xaﬁ) =0.

Then, u is regular for every A # 0 such that
#< (x+ B8+ DB +1)
FB+n+1)I'(n+oa+B+1)
61

mkﬂ%ﬁﬁ_a n>1. (65)
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(18) and (64) give

W (BrntDa+fantl) (o)
" (a+B+2n+ 1) (a+B+2n+2) en(A o, 3) ]

Then,with (17), we obtain for n > 0

Y1=—A,
 BantD(at B0+l enn(AaB)

Vet = T G Bt )(a+ Bt 2n+2) en(h o, f) (67)
- (n+1)(ax+n+1) en(N, o, B)

Yon+3 = (- Br2n+2)(at B+2n+3)eni(A o, B)

Taking into account that the form v is classical and by virtue of Proposition 5, the
form u is also semi-classical. It satisfies (32) and (35) with

O(z) = x(z — 1) (22 - 1),
U(z) = (z — 1)((20c+25—3):r2+20c+ 1),

Co(z) = —(xz —1) <(2cx+ 28+ 1)z + 2 + 2cx),

Dy(z) = 2(cc 4 B)z? — 200 — 2\ (ot 4 B + 1).

From (60), we have

®(0) =0, &(1)=0,
X(1)=F-Ma+B+1), X (1)=oa+ph,
Y(1)=8-1.

Now it is enough to use Proposition 8 in order to obtain the following results:

(i) If A satisfies (65) and A # %ﬁﬂ, then the class of u is § = 2.

(ii) If A = #QJFP then the class of u is § = 1 since (X (1), Y (1)) # (0,0).

Remarks.

(i) The semi-classical orthogonal polynomials of class one satisfies (14) have been
described in [5, 7).

(i) A = %,641’ then from (59), we get for R(x) > —1, R(B) >0

(u, f) = m/_lsgmw“(l — )Pl ) f(@)dr. (69)

This result exist in [7,12].
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According to Proposition 9, (60) and (67), we have, for n >0

B2n+2:2((2n+o¢+,8+2)x2—n—1—

Co(z) = —(x — 1)((2oc+ 28+ 1)a? + 2+ 20c>,
Cy(z) = (x — 1)<(2o¢+26+ Da? —x — 20— 4\ + B + 1)),

Conyolx) = (x — 1)((4n + 200+ 28+ 3)2? +x —2n —2

st at+D(x+p) (ﬂ+n+1)(cx+6+n+1)en+1(?\,cx,ﬁ))
2n+ o+ 5+2 (x+ B +2n+2) en(M\ o, B) )7

Congs(x) = (x —1) ((4n + 200428 +5) 2% — 2 —2n—2

_2(n+oc+1)(oc+ﬁ) _4(n+1)(oc+n+1) en(A, , B) )
n+o+p+2 (x+B+2n+2) epr1(A, x,0) )’

Do(x) = 2(x + B)x? — 200 — 2A(x 4 B + 1),
Dopy1(z) =2(z — 1)} (x+ S+ 2n+1),

(n+ o+ 1)(x+ —p)
2n+oa+p+2 )
BAn+D(a+B+n+1)ensi(N\ «, B)
(x+ B +2n+2) en(A, &, )
(n+ D(a+n+1) end ap)
(x+B8+2n+2) epy1(A, x, 3)

-2
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