© cscanada ISSN 1925-251X  [Print]

Progress in Applied Mathematics ISSN 1925-2528 [Online]
Vol. 7, No. 1, 2014, pp. [9-19] www.cscanada.net
DOI: 10.3968/3002 www.cscanada.org

Pseudo-Parallel Legendrian Submanifolds With

Flat Normal Bundle of Sasakian Space Forms

CHEN Xiaomin" and YANG XuelPkld

(2] College of Sciences, China University of Petroleum (Beijing), Beijing, China.

[PlInstitute of Remote Sensing Applications Chinese Academy Of Sciences, Beijing,
China.

[ISchool of Computer and Information Engineering, Henan University, Kaifeng,
China.

* Corresponding author.
Address: College of Science, China University of Petroleum (Beijing), Beijing;
E-Mail: xmchen1983@126.com

Supported by The NNSF( 11071257), partially by Science Foundation of China
University of Petroleum (Beijing) and the NNSF of China (41201349).

Received: October 14, 2013 / Accepted: December 20, 2013 / Published online:
January 24, 2014

Abstract: Let M™ be a Legendrian submanifold with flat normal bundle
of a Sasakian space form M2+l (¢). Further, M™ is said to be pseudo-parallel
if its second fundamental form h satisfies R(X,Y)-h = L(X AY -h). In this
article we shall prove that M is semi-parallel or totally geodesic and if M
satisfies L # % then it is minimal in case of n > 2. Moreover, we show
that if M™ is also a H-umbilical submanifold then either M™ is L = 013, or

n=1.
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Pseudo-Parallel Legendrian Submanifolds With Flat Normal Bundle of Sasakian
Space Forms

1. INTRODUCTION

Recall that an isometric immersion f : M" — M™* from an n-dimensional
Riemannian manifold into n + k-dimensional Riemannian with metric ¢ is
pseudo-parallel if its second fundamental form h satisfies

R(X,Y) -h=LXAY -h, (1.1)

where R(X,Y) is the curvature operator with respect to the van der Waerden-
Bortolotti connection V of f, L is some suitable smooth function on M and X A
Y is an operator: (X AY)Z = g(X,2)Y —g(Y,Z)X. So M is also referred as
a L-pseudo-parallel submanifold of M. Tn particular, if L = 0, M is called a
semi-parallel submanifold.

In fact, the definition of pseudo-parallel was introduced in [1],[2] as an natural
extension of semi-parallel and as the extrinsic analogue of pseudo-symmetry in the
sense of Deszcz [7], i.e., the curvature operator of a semi-Riemannian manifold(M, g)
satisfies

R(X,Y)-R=LgX AY R,

for any X,Y tangent to M, Lr being some real value function on M.

Recently, concerning the study of pseudo-parallel immersion there are many
results (see [1,2,9-11]), where the ambient manifold M has constant sectional
curvature.  In particular, we observe that Chacén and Lobos [5] studied
pseudo-parallel Lagrangian submanifolds in a complex space form, and gave several
properties. Also, they proved a local classification of pseudo-parallel Lagrangian
surfaces. Analogous to the Lagrangian submanifolds in a complex space form,
we consider M™ is a Legendrian submanifold in Sasakian space form. Such a
submanifold has been deeply studied over the past of several decades. However,
for the pseudo-parallel submanifolds in a Sasakian space form, there is only
AYildiz etc’s result [14], where they considered pseudo-parallel C-totally real
minimal submanifolds in a Sasakian space form M 2nt1(¢) and showed it is totally
geodesic if Ln — f(n(c+ 3) + ¢ —1) > 0. In the present paper we consider the
Legendrian submanifolds with flat normal bundle in Sasakian space forms, which
satisfy pseudo-parallel condition (1.1).

In section 2 we introduce some necessary basic conceptions and give some
properties. The section 3 is our main results.

2. BASIC CONCEPTS
2.1. Sasakian Space Form

Let M2"+! be a 2n + 1-dimensional Riemannian manifold. M is called an almost
contact manifold if it is equipped with an almost contact structure (¢, £, n), where
¢ is a (1, 1)-tensor field, £ a unit vector field, 7 a one-form dual to £ satisfying

¢*=—I+n®E&nodp=0,60f=0. (2.2)
10
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It is well-known that there exists a Riemannian metric g such that

9(6X,0Y) = g(X,Y) = n(X)n(Y), (2.3)

where X,Y € %(M) Moreover, if the almost contact structure (¢,&,n) is normal,
ie.

(Vx9)Y =§(X,Y)E —n(Y)X, Vx¢&=—¢X,

for any vectors X,Y on M , where V denotes the connection with respect to g, then
M is said to be a Sasakian manifold. For more details and background, see [4]
and [13].

A plane of T,,M at p is called ¢-section if it is spanned by X and ¢ X, where X
is orthonormal to £&. The curvature of ¢-section is called ¢-sectional curvature.

A 2n + 1-Sasakian space form is defined as a 2n 4+ 1-Sasakian manifold with
constant ¢-sectional curvature ¢ and is denoted by M Intl(e).  As examples of
Sasakian space form, R?"*t1 and S2"*! are equipped with Sasakian space form
structures( more details in [3] and [13]). The curvature of a Sasakian space form
M?27+1(c) is given by [13]

RX,Y)Z=¢ Z 3GV, 2)X — §(X, 2)Y)

* %(”(X)U(Z)Y —n(Y)n(Z)X +3(X, Z)n(Y)¢ (2.5)
= G0V, Z(X)E+G(8Y, 2)0X — (60X, 2)0Y — 25(6X,Y)62),
for any X,Y,Z € TM.

2.2. Pseudo-Parallel Legendrian Submanifolds

Let M™ be an n-dimensional submanifold of a Sasakian space form M27+1 (c). If the
one-form 7 constrained in M is zero, then we say M is a Legendrian submanifold.
It is well-known that for such a submanifold ¢ maps any tangent vector to M at
any p € M into the normal vector space TPLM, ie. ¢T,M C TPLM. Actually, a
Legendrian submanifold is special a C-totally real submanifold(i.e. the unit vector
field ¢ is orthonormal to M) . Therefore we obtain from (2.3) and (2.4) that for
any XY € TM,

§(¢X7 ¢Y) = g(X7Y)7 T](X) = g(Xag) =0,

where ¢ is the induced metric of §. As usual, V and V= denote by the Lev-Civita
connection and normal connection on M, respectively. Then

VxY = VxY +h(X,Y),
where h is the second fundamental form. Similarly, the Weingarten formula is:

VxN = —AyX 4+ V%N,
11
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where N is an normal vector on M and Ay is the shape operator. The shape
operator is related to the second fundamental form by

9g(ANX,Y) = g(h(X,Y),N) = g(X, ANY). (2.6)

If R and R+ denote, respectively, the Riemannian curvature tensors correspond-
ing to V and V+, then the basic Gauss equation and Ricci equation are:

JRX,Y)Z,W) = g(RX,Y)Z,W)+G(h(X, 2), h(Y,W)) = G(h(X, W), h(Y, 2)),
J(R(X,Y)N,V) = GRY(X,Y)N,V)—g([An,Av]X,Y),¥N,V € T+ M.
The Codazzi equation:
(R(X,Y)2)* = (Vxh)(Y. Z) = (Vyh)(X, Z).
Here V = V@ V+ stands for the Van der Waerden-Bortoloti connection, given by
(Vxh)(Y,Z) = Vxh(Y, Z) = l(VxY, Z) = h(Y,Vx Z).
Moreover, the following facts are well-known:
Lemma 2.1 (see [8]). For a Legendrian submanifold, the following equations hold:
ApxY = Apy X, (2.7)
ApxY = —oh(X,Y) = Apy X, Ae =0,
9(W(X,Y),0Z) = g(M(X, Z), Y ).
Therefore, it reduces from (2.2) and (2.8) that
PAyxY = h(X,)Y) = ¢pAuy X. (2.10)

Moreover, using (2.10) and (2.4), from the Gauss equation we get

R(X,Y) = R(X,Y) — [Apx, Apy]- (2.11)

For any vector fields Z, W on M, the curvature operator R(X,Y’) with respect to
V and X AY can be extended as derivations of tensor fields in usual way. Therefore
(R(X,Y) - h)(Z,W) =R*(X,Y)(h(Z,W))
—hR(X,Y)Z,W)—h(Z,R(X,Y)W),
(XAY -h)(Z,W)==h((XANY)ZW)-h(Z,(X NY)IV)
=—9(Y, 2)h(X, W) + g(X, Z)h(Y, W) (2.13)
—g(YWh(X,Z)+ g( X, W)h(Y, Z).

(2.12)

By (2.10),(2.12) and (2.13), if the normal bundle is flat, i.e. Rt =0, then (1.1)

becomes
—AywR(X,Y)Z — AyzR(X, Y)W

:L{ —g(Y, Z)A¢XW—|—Q(X, Z)A¢yW (214)
—g(Y,W)AyxZ + g(X, W)Agy Z}.
12
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That is, a Legendrian submanifold M" with flat normal bundle of M’ Intl(c) is
pseudo-parallel if only if the Equation (2.14) is satisfied. In particular, if L = 0,
then M is said to be semi-parallel. It is obvious that a totally geodesic submanifold
is semi-parallel.

The following two propositions are the analogous conclusions to [5, Prop.3.1,
Prop.3.2] in case of pseudo-parallel Legendrian submanifolds, respectively.

PropositionZ.Z. Let M™ be a pseudo-parallel Legendrian submanifold of Sasakian
space form M?" 1. If there exists another function L' satisfies(1.1) , then L = L'
at least M — 'V, where V- = {p € M|h, = 0}.

Proof. If two functions L and L’ satisfy (1.1), we have
(L—L)XAY -h=0.
Choosing an orthonormal basis {e1,--- ,e,} of T,M, p € M, we get

(L —L")[e; Nej-hl(ex,er) = (L — L) [—h((e; A ej)eg, er) — hlex, (e; Aej)er)]
=(L — L"){—g(ej, ex)h(ei, e1) + g(ei, ex)hle;, er)
— glej,en)h(es ex) + glei, en)h(e;, ex)}
=(L — L"){—0,h(ei,er) + dirh(e;,er) — djih(es, ex) + dih(ej, ex)} = 0.

For i =k # j = [, we have
(L —L")(h(ei,ei) — h(ej, e5)) = 0.
For i =k =17 j, we have
(L — L")h(e;,e5) =0.
If L(p) # L'(p) for p € M, then
h(ei,e;) =0,h(e;, e;) = h(e;,e;) forVi##j.
On the other hand, since when i # j,

g(h(ei, ), pe;) = g(h(ei, €5), dei) =0,
g(h(es, e:), pe;) = g(h(eja ej)7 pei) = g(h(es, ej)v pe;) =0,
g(h(ei’ 61‘),5) = 07

thus we obtain g(h(e;,e;), N) =0, i =1,--- ,n, YN € T+ M since {¢pey,--- , pen, &}
is a basis of T+ M for a Legendrian submanifold, that is, h = 0. Consequently,

{pe M|L(p) # L'(p)} S V.

It leads to the proposition.
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Proposition 2.3. Let M™ be a pseudo-parallel Legendrian submanifold of Sasakian
space form M2”+1(c) with flat normal bundle , then for any vector fields X, Y € TM
we have

R(X,Y)oH = L{g(¢H, X)Y — g(¢H,Y)X)}.

Here H = %trh is the mean curvature vector.

Proof. Let {e1,---,e,} be a local orthonormal frame of M, Z unit vector field
of T, M for p € M. For any vector U on M, using (2.6), we obtain from (2.14)

9(R(X,Y)Z, AgwU) + g(R(X, Y)W, Ay U)
=L{9(Y, 2)g(ApxW.U) — 9(X, Z)g(Apy W.U) (2.15)

Taking W = U = ¢; in (2.15), we obtain

g(R(X7 Y)Z? A¢€j 6])+g(R(X, Y)eja Ad)Zej)
=L{g(Y, Z)g(Apxej, e;) + 9(Y,e;)9(Asx Z, ;)
—9(X,Z2)g(Agyej,ej) — g(X,e;)9(Apy Z,e;) }.

Assume now that {\;}7_; are the eigenvalues of A,z corresponding to frame
{ej}j—1. Using (2.6) and (2 7), we get

—9(R(X,Y)Age,e5, 2)+Xj9(R(X,Y )ej, e5)
=L{g(Y, Z)g(Age; 5, X) + g(Y, €;)g(Apze;, X)
—9(X ) (Age,€j,Y) = 9(X, ¢j)9(Apze;, Y) }
—L{g( )9(Age; e, X) +
Y)

Ajg(Y; ej)g(ej7 X)
—9(X, Z)g(Ape,e5,Y) — Xjg(X, e5)g(e;, Y )}
i.e.
—9(R(X,Y)Age,e5. Z) = L{g(Y, Z)g(Ape, €5, X) — 9(X, Z)9(Age,e5.Y) }.
Therefore

1 n
g(R(X7Y)¢H7Z):_E g(R(X7Y)A¢€j€j7Z)

1

L{g(Y, Z)g(¢H,X) — g(X, Z)g(¢H,Y)}.

It completes the proof of proposition.
3. MAIN RESULTS

’;‘vheorem 3.1. Let M™ be a Legendrian submanifold of Sasakian space form
M+ (¢)(c < 1) with flat normal bundle, then M™ is pseudo-parallel if and only if
it 18 semi-parallel or totally geodesic.

14
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Proof. By the curvature tensor (2.5) of M, for any X,Y € TM we have

RX,V)pH = 3

(9(Y,¢H)X — g(X,¢H)Y).

Since Rt = 0, the Ricci equation reduces to [Agx,Agy] = 0, which implies

R(X,Y)¢pH = R(X,Y)¢H in view of (2.11). So, by Proposition 2.3 we have
c+3

(L+ 552) (9(@H, )X = g(6H, X)Y) =0,

It yields L = —% or H=0.

When L = —CZ?’, if c = =3, it means that L = 0. If ¢ # —3, i.e. L # 0, then it

is easy to get
—g(Y, Z)A¢XW + g(X, Z)A¢yW - g(Yv7 W)A¢XZ + g()(7 W)A¢yZ =0 (316)

due to (2.14). Thus, from (3.16) and making use of analogous argument to
Proposition 2.2, we have h = 0, that is, M is totally geodesic.
Next we assume that L # —<t3 then H = 0. By (2.5), for any vector X,Y, Z

tangent to M, !
RX,V)Z = 53 (0(v, 2)X — g(X, 2)Y. (3.17)
By making use of (2.14) and (3.17), we have
(CE2 L D)= g 2)Ax W+ g(X, Z2) Ay W
4 (3.18)
—g(Y W) AyxZ + g(X,W)Apv Z = 0} =0.
If we set X =W = ¢;, and sum over ¢ = 1,--- ,n, using that H = 0, we obtain

L =<3 or AyyZ =0 for any Y and Z. The second case means that M is totally
geodesic. Assume in following L = <f3. Notice that in [14] A. Yildiz et al gave an
necessary condition for a minimal pseudo-parallel C-totally real submanifold to be
totally geodesic is Ln — +(n(c+3) + ¢ — 1) > 0. Therefore, in this case, M" is also
totally geodesic.

Conversely, if M is semi-parallel or totally geodesic, obviously it is trivial pseudo-
parallel.

For a constant curvature manifold if its normal bundle is flat, Cartan, E. proved
the following well-known fact (see [6]):

Lemma 3.2 (Cartan, E). Let M™ be a submanifold of constant curvature
space M”*k(c), {&a} local orthogonal normal vector fields, and {h*} the second
fundamental forms corresponding to {,}. Then in every point of M, all the H*
are mutually diagonalizable if and only if the normal bundle of M 1is flat.

By Lemma 3.2, for any p € M there exists a local orthogonal frame {e;} of
M™ such that all the second fundamental form tensors are mutually diagonalizable,
namely, for any unit normal vector field N,

AN(GZ‘) = /\ﬁvei,
where AV are the principle curvatures of M with respect to N.

15
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Theorem 3.3. Forn > 2, let M™ be a Legendrian submanifold of Sasakian space
form M**L(c) with flat normal bundle. If M™ is pseudo-parallel, then L = % or
M is minimal.

Proof. For a Legendrian submanifold M we may choose an orthonormal basis

of T;-M of the form {e,11 = ey, - ,ea, = Pen,eanr1 = £} For any 4,5 €
{1,---,n}, denote )\?H by the principle curvature with respect to normal vector
field ¢e;, i.e.,

Ad)ej €; = )\?Jrjei. (319)

Thus in this case the mean curvature vector can be written as
Hn+j _ i )\W‘H
= § AR
n =
K2

In view of (3.18), setting X =e;, Y =e¢;, Z = e, and W = ¢;, we have

3
(C L L) {6i1Age, ek — OjkAge €1+ OinAge, €1 — 0j1Age,ex} =0,

where g(e;,e;) = d;; and 1 < 4,4, k,1 <n. Using (3.19), we obtain

c+3 n+j n4+1 n+j n+1
( 1 — L) {)\kﬂ&ilek - )‘l + (53‘;@6[ + )‘l +](5i;€el — )\k+ 5jlek} =0.

Moreover, we have

(c—|—3

. L) (N 6001 — AP0 101 + N 801 — APT0500s ) = 0. (3.20)

If we assume j = s, 4 = k in (3.20), it reduces to

(“ D L) (A N N A} =0

Further, by summing over ¢ = 1,--- ,n, we have
R A N T R VL S Vst 21
( 1 ){Z i Ol T AL A *Z i il}*0~ (3.21)

?

Because it follows from (2.7) that
N = g(Age,eir €0) = g(Age,eirer) = N6,

therefore Equation (3.21) implies

(C Z 3 L) AP = 0. (3.22)

On the other hand, using (3.19), it follows from (2.15) that

—_\nt

S

"Rijks — NP Rt = L{ — 8,300 NPT 4 8Os A
— 810k NPT+ Sudis Ay}

16
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Since
c+3 c+3
Rijks = T(5jk5is — 0indjs), Rijis = T(ajlfsis —d4djs), (3.24)
by substituting (3.24) into (3.23), we get

c+3 .., .
= AT Or0is = dikdjs) + AT (5001 — 0udje) } )
= L{=8500 A + 0ubus N = 800rs AT 4 S Ay

In the same way, putting ¢ = k, j = s and summing over ¢ = 1,--- ,n and j =
1,---,n in (3.25), respectively, we have

c+3

TH”“ =L\ (3.26)

Combing (3.26) with (3.22), we concluded that if (L — <2)H"* = 0. This
completes the proof of theorem.

It is easy to show the following corollary from (3.26):

Corollary 3.4. For n > 2 and ¢ # —3, let M™ be a Legendrian submanifold of
Sasakian space form M?"+1(c) with flat normal bundle. If M™ is semi-parallel then
it 1s a minimal submanifold.

In [14, Corollary 6], the authors showed that for a minimal Legendrian
submanifold M™ of Sasakian space form M2"+1(¢), if it is semi-parallel and satisfies
n(c+3)+c¢—1<0, then it is totally geodesic. Thus by Corollary 3.4, we have the
following corollary:

Corollary 3.5. For n > 2 and ¢ < =3, let M™ be a Legendrian submanifold of
Sasakian space form M?*"*1(c) with flat normal bundle. If M™ is semi-parallel then
it is totally geodesic.

Note that Blair proved the following conclusion:

Theorem 3.6 ([4]). Let M™ be a minimal C-totally real submanifold of (2n +
1)-Sasakian space form M(c). Then the following are equivalent:

1) M™ is totally geodesic,
2) M™ is of constant curvature K = X(c+3),
3) S=1i(n-1)(c+3),
4) k=3n(n—1)(c+3),
where S and k are the Ricci curvature and scalar curvature of M, respectively.

Since the normal bundle is flat, M™ is of constant curvature K = 013, in view
of Corollary 3.4, we have
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(iorollary 3.7. Let M™ be a Legendrian submanifold of Sasakian space form
M2 Y(¢e) (¢ # —3) with flat normal bundle. If M™ is semi-parallel the following
conclusions are equivalent:

1) M™ is totally geodesic,
2) §=1(n—1)c+3),
in(n—1)(c+3).
Now recall that an non-totally geodesic Legendrian H-umbilical submanifold

M™ of Sasakian manifold M2"+1 is a Legendrian submanifold and its second
fundamental form satisfies the following forms:

h(ei,e1) = Ape1, h(ez,e2) = --- = h(en,en) = pder,

. (3.27)
h(ei,ej) = poe;, h(ej,ex) =0, 2 <j#k <mn,

for some suitable functions A and p with respect to some suitable orthonormal local
frame field {e;} of M [12].

Theorem 3.8. Assume that M"™ is a Legendrian H-umbilical submanifold of

Sasakian space form MQ"‘H(C) with flat normal bundle connection. If M™ is

pseudo-parallel then either L = CZ?’, orn =1.

Proof. We consider {e1, - ,e,} as (3.27), then from (3.18) we get

c+3
( - L) {61 Agpe,er — OjpApe €1 + OirApe €1 — Gj1Age,er ) = 0. (3.28)

Assume that j = 1 and ¢ = k in (3.28), a straightforward calculation implies

(61_3 —L){(n—l)()\—u)€1 +nuzez}=0~ (3.29)

1=2

If L # <13 then the above equation implies that = 0 and (n — 1)(A — p) =0
since {e;} is orthonormal, that is, n = 1.
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