Then, let >0 be arbitrary, it follows that

\pl,<e+ MY L |pl,

k=1
which together with (4) and the arbitrariness of ¢ imply
that

lpl,—0.

el

Accordingly, applying Lemma 2.4 we conclude that F

ou(t,x) o u(t,x)
ot ox’

u(t,0)=x(t,7)=0,
u(t,x) = o(t,x),

where p>1, F(t,x,u,v)=[f,(t,x,u,v), f,(t,x,u,v)] for each
(t,x,u,v) €[0,1]1x[0,7]x R x PC,.
Let A:D(A)c X —>X be operator defined

2

by Aw = o

ox?

with domain D(4)={weX:w,w'are absolutely

continuous,w"e X and w(0)=w(7)=0}.
It is known that 4 has a discrete spectrum and
the eigenvalues are-n’,n € N,with the corresponding

. . 2 .
normalized eigenvectors @, (x)=,|—sin(nx),0<x< 7.
T

Moreover, A generates a compact, analytic
semigroup{T'(¢)} ., on X

To=Y " (o,a,)m,, Tl <e' <1 forallz>0

n=1
(see Henry, 1981). According to the compactness of 7(¢)
for ¢ > 0, one can verify that 7(¢) is uniform operator
topology continuous for 7> 0.
To treat the system (10), we assume that the functions

£:[0,11x[0,7]xRxPC,— R(i=1,2) satisfy
(Fvl).fl(t7x>usv)S fZ(tsxsuav)for eaCh(t,x,M,V)e
[0,1]x[0,x]xR*xPC,
(F,) fi1s 1.s.c.and f;1s u.s.c.;
( F ) there exist functions 7,7, €L"(R",R") such that
|f(tx,u,v) < (O(u [+ v ]) +,(0);
Then one can verify (see Chen, 2013; Vrabie, 2012) that
the multi-valued function F:[0,1]xXxPC,—2" defined as
F(tu,v)y={yeX:y(x)el/i(t.xu(x),v), f(txu(x),v)]
a.e.in[0,7]}
satisfies assumptions (H,)-(H,) (with
n(1) =7 max {n, (1), 7,(1)} in (I1)).
Define

1, ({2 ))(x) = ——sin(u(y, ).
pm

u(t, ,x)—u(t,,x)= Lsin(x(tk ,x)), ¢
pm

t €[0,1],
t e[—h,()],x E[O$ﬂ]a
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has at least one fixed point in D, which is a mild solution
of (1). The proof is complete.

3. AN EXAMPLE OF EXISTENCE RESULT

Take X=L*(0,7) and denote its norm by [l and inner
product by(.,.) to illustrate our abstract results, let us
consider the system of partial differential inclusion in the
form

e F(t,x,u(t,x),u(x)), (t,x)el[0,1]x[0,7],t=¢,

L,k= 1,...,m,
m+1

(10)

k

It is clear that

iz

7. (< k=1_.,myelX,
pm

1
IACAEIAGS sp—mll w=-wl k=1..,my.,y,€X.
These yield that the hypotheses(H,)-(H) are satisfied.

: o r-1
Assume that F satisfies (H) w1thJ.0 u(s)ds < TR then

all the conditions in Theorem 3.1 are satisfied. Hence, the
system (10) has at least one mild solution.

REFERENCES

Ahmed, N. U. (2006). Measure solutions for impulsive evolution
equations with measurable vector fields. J. Math. Anal.
Appl., 319, 74-93. sk}

Benchohra, M., Gatsori, E. P., Henderson, J., & Ntouyas, S. K.
(2003). Nondensely defined evolution impulsive differential
inclusions with nonlocal conditions. J. Math. Anal. Appl.,

Benchohra, M., Henderson, J., & Ntouyas, S. K. (2006).
Impulsive differential equations and inclusions (Vol.2). New

.

York: Hindawi Publishing Corporation. sk}

Bothe, D. (1998). Multi-valued perturbations of m-accretive
Cardinali, T., & Rubbioni, P. (2008). Impulsive semilinear
differential inclusions: Topological structure of the solution
set and solutions on non-compact domains. Nonlinear Anal.,
69(1), 73-84. isksl
Chen, D. H., Wang, R. N., & Zhou, Y. (2013). Nonlinear
evolution inclusions: Topological characteriza- tions of
solution sets and applications. J. Funct. Anal., 265, 2039-
Chuong, N. M., & Ke, T. D. (2012). Generalized Cauchy
problems involving nonlocal and impulsive conditions. J.

-

Evol. Equ., 12, 367-392. sk}

Copyright © Canadian Research & Development Center of Sciences and Cultures



Existence Results of Noncompact Impulsive Delay Evolution Inclusions

Djebali, S., Gorniewicz, L., & Ouahab, A. (2011). Topological
structure of solution sets for impulsive differential
inclusions in Fréchet spaces. Nonlinear Anal., 74, 2141-
2169.

Feckan, M., Zhou, Y., & Wang, J. R. (2012). On the concept and
existence of solution for impulsive fractional differential
equations. Commun. Nonlinear Sci. Numer. Simul., 17,

Gabor, G., & Grudzka, A. (2012). Structure of the solution
set to impulsive functional differential inclusions on
the half-line. Nonlinear Differ. Equ. Appl., 19, 609-

Henry, D. (1981). Geometric theory of semilinear parabolic
equations. Springer, Berlin.

Kamenskii, M., Obukhovskii, V., & Zecca, P. ( 2001).
Condensing multi-valued maps and semilinear
differential inclusions in banach spaces, de gruyter
series in nonlinear analysis and applications (Vol.7).
Walter de Gruyter, Berlin, New York. ok

Copyright © Canadian Research & Development Center of Sciences and Cultures

Lakshmikantham, V., Bainov, D. D., & Simeonov, P. S. (1989).
Theory of impulsive differential equations. Singapore: World

equations in Banach spaces. J. Inequal. Appl., 6, 77-97. ik}
Obukhovskii, V., & Yao, J. C. (2010). On impulsive functional
differential inclusions with Hille-Yosida operators in

Banach spaces. Nonlinear Anal., 73, 1715-1728. i

Samoilenko, A. M., & Perestyuk, N. A. (1995). Impulsive

differential equations, world scientific. Singapore sk

Vrabie, 1. I. (2012). Existence in the large for nonlinear delay
evolution inclusions with nonlocal initial conditions. J.
Funct. Anal., 262, 1363-1391.ists

Wang, R. N., & Zhu, P. X. (2013). Non-autonomous evolution
inclusions with nonlocal history conditions: Global integral
solutions. Nonlinear Anal., 85, 180-191.

Wang, R. N., & Ma, Q. H. (2015). Some new results for multi-
valued fractional evolution equations. Appl. Math. Comput,
257, 285-294.



