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Hence, one can conclude that
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Combining (5), (8) and (9), one has
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which implies 
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 is a relatively compact subset of 
PCT. Moreover, 
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 is compact because 
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d

 is closed and 
relatively compact.

Now, we verify that F is u.s.c. on 
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. Since, we have 
that 
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 is qusi-compact. Let {(un,vn)} be a sequence in 
  such that
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Then there exists a sequence 
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 such 
that
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. Observe that SelF is 
weakly u.s.c. with convex, weakly compact values due 
to Lemma 3.1. It follows from Lemma 2.2 that there 
exists
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 and a subsequence of {fn}, still denoted 
by {fn}, such that fn→f weakly in L(J;X). Lemma 2.5 
guarantees that 
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 and thus 
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, which implies 
that 
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 is closed. Hence, it yields from Lemma 2.1 that 
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is u.s.c. on 

d
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.

Finally, we process to prove that F has contractible 
values. Let
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 and 
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 Define a function 
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 by 
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where 

d

 is the unique mild solution of the 
following problem 
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Clearly, h is well defined, and for every 
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Below,  we  ver i fy  tha t  h  i s  con t inuous .  Le t 
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 with λ1≤λ1 , one can  choose 
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 such that 
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 and fi(t)=f(t) for all 
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 Write, 
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For 
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, we have 
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Also, for

d

, it follows from (6) and (H4) that 
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Moreover, in view of (H4), (H5) and the fact that f1(t)=f2(t)for
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, we obtain that for 
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Therefore, we conclude that for each 
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Note that
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