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Abstract
A Qualitative Review of Spintronics Devices and their 
Applications to harness Ambient Energy at the Normal 
Temperature on the basis of Quantum Thermodynamics 
has been presented in this paper. The approach to design 
the devices on the basis of Mathematical equations, has 
been suggested. The importance of Nersnt equation in 
the analysis has been emphasized. The paper is expected 
to be useful to the designers and engineers engaged in 
developing Ambient energy generation devices.
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1. INTRODUCTION 
Spintronics, has recently evolved as an off-shoot (1) of 
Electronics. Due to the great importance of this topic, 
it has been applied to a large number of topics (2-11).
Another field of great significance and importance is 
connected with the harvesting of renewable energy (12 

-18).In the last few years, interest has been shown by a 
number of researchers in the Interdisciplinary (Spintronics 
and Quantum Thermodynamics) research for Ambient 
energy. The present paper is an attempt made in this 
direction. Different approaches for the device designing 
have been suggested, and subsequently the use of 
quantum thermodynamics and especially Nersnt equation 
for harnessing ambient energy has been highlighted.

The concepts of Spintronics, and some Devices based 
on it, are illustrated in Figure 1.

Figure1
Spintronics concepts

Windbacher et al (2015) have studied the Modeling of 
multipurpose spintronic devices.

2. MATHEMATICAL TREATMENT
The principal parameters for designing the Spintronic 
devices, are Magnetoresistance, Magneto Tunneling 
Junction(MTJ), and Tunneling Magnetoresistance (TMR), 
which have to be chosen and optimized differently for 
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each spintronic device by following suitable model e.g., 
Yu and Flatte‘s Model and Monte Carlo Method. 

The difference in the computed value and the 
experimentally achieved value has to be corrected by 
applying the feedback from the achieved value, which 
needs the experience and expertise of the designer, who 
has to perform much iteration with the help of software. 

Yu and Flatte‘s Model, has been found to be efficient for 
designing of the Spintronic devices, which assumes a bias-
independent spin polarization at the interface, and is based 
on the introduction of a drift term. The spin injection 
demonstration device, used in Spintronics applications, 
has been shown below: 

 

Figure 2
Spin injection demonstration device

Another simple approach is that of the semiclassical 
model of charge and spin transport using the drift–
diffusion theory, based on considering transport in 
metallic/semiconducting nonmagnets and metallic 
ferromagnets, and by limiting the designing to diffusive 
dynamics, and assuming that the density and external 
fields are slowly varying on the scale of the mean free 
path λ, which is considered to be smaller than the spin 
diffusion length L.

The approach of transport description is semiclassical, 
in which the quantum tunneling and interference are 
neglected. This approach is based on assumptions: 
slow spin relaxation processes to eattain equilibrium 
polarization; weak external fields for ensuring the working 
to be within the linear response theory; absence of spin 
Hall Effect, spin Coulomb drag; and space charge effects.

This approach is based on considering the structure 
as shown in Fig. 3, consisting of a ferromagnet (F) in 
contact with a nonmagnet (N). Clearly, the F/N bilayer is 
under the effect of an electric field governed by the charge 
voltage Vc, and (ii) a magnetic field B= µ0H, where µ0 
is permeability of vacuum and H is the magnetic field 
intensity). 

Here, the ferromagnet is assumed to have in-plane 
magnetic anisotropy. However, the following results and 
analysis thereafter generally holds for ferromagnets with 
perpendicular magnetic anisotropy.

Figure 3
Schematic illustration of a ferromagnet/nonmagnet (F/
N) bilayer

(a) 2-D view showing the rescale magnetization m, 
the effective magnetic field Heff, and the acting torques. 
(intrinsic damping τd, precession τp, and STT τST T 
(Sharma, Wen, Takanashi, & Mizuguch, 2019). (b) 3-D 
view showing the external fields: (i) an electric field E 
governed by a charge voltage VC and (ii) an arbitrarily 
oriented magnetic field of magnitude B and orientation 
angles ϕ and θ.

Following the approach of Yu et al (2002), the 
expression for the current density J↑(↓), carried by the 
electrons with spin up (down), is given by: 
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J↑(↓) = e n↑(↓) µ E + e D ∇n↑(↓) ---- (1),
where D is the electron diffusion coefficient, µ is the 

electron mobility, E is the electric field, and e is absolute 
value of the electron charge. Also, the spin concentration 
is expressed as n↑(n↓), respectively. Therefore, the 
electron concentration is given by :

n = n↑ + n↓---- (2), 
and the spin density is defined as:
 s = n↑ − n↓ ---- (3). Hence, the electron charge 

(spin) current can be in the same manner given by the 
corresponding densities as:

Jc(Js) = J↑ ± J↓----(4). Subsequently, the spin 
polarisation is given as:

 P =(s/n); and by substituting the definitions from (1) 
into the steady state continuity equation and adding spin 
scattering leads to the following expression:

∇·J (↓)= ±e(n−n↓)/τs 
 ---- (5)
where τs is the spin relaxation time. Following the 

same procedure on the Poisson equation, the electric field 
can be defined as:

∇ · E = e (n↑ + n↓
 − ND)/ϵSi ---- (6)
where ϵSi is the electric permittivity of silicon and 

ND is the doping concentration. Another parameter Vth, 
which denotes the thermal voltage is given as: 

Vth =kB T/q ---- (7), 
where kB is the Boltzmann constant and T is the 

temperature. The designer has to consider the parameter-
the intrinsic spin diffusion length (L), which is defined as:

 L = √(Dτs) ---- (8),
 and the diffusion coefficient D is related to the 

mobility by the Einstein relation D = µ Vth. The 
respective charge current and the spin currents are then 
given by:

Jc=e n µ E + e D dn.dx
 ---- (9), and
Js=e s µ E + e D ds.dx
 ---- (10).
The spin density equation is given by:
d2s/dx2 + (1/Vth)d(Es)/dx−s/L2= 0 ---- (11),
where both s and E are position dependent. The spin 

injection into silicon, is studied by defining boundary 
conditions.

Alicki and Josloff (2018) have described Quantum 
Thermodynamics as a continuous dialogue between two 
independent theories: Thermodynamics and Quantum 
Mechanics. It has been discussed that when the two 
theories address the same phenomena, some new insight 
is emerged. 

For computing the ambient energy produced at 
normal temperature, the Nernst equation is used, 
which In electrochemistry, is an equation relating the 
reduction potential of an electrochemical reaction 
(half-cell or full cell reaction) to the standard electrode 
potential, temperature, and activities of the chemical 

species undergoing reduction and oxidation, which 
is mostly approximated by concentrations. Thus, the 
Nersnt equation is a quantitative relationship between 
cell potential and concentration of the ions given as: 
Ox + z e− → Red ---- (12).

According to standard thermodynamics, the actual free 
energy change ΔG is related to the free energy change 
under standard state ΔGo by the relationship:

ΔG= ΔGo + RTln Qr----(13),
where Qr is the reaction quotient. Also, the cell 

potential E associated with the electrochemical reaction is 
defined as the decrease in Gibbs free energy per coulomb 
of charge transferred, leading to the relationship: 

ΔG= -zFE
---- (14) . 
It has to be noted that the constant F (the Faraday 

constant) is a unit conversion factor F = NAq, where NA 
is Avogadro›s number, and q is the fundamental electron 
charge, which leads to the Nernst equation, which for an 
electrochemical half-cell is

Ered = E
o
red - RT/zF ln Qr = E

o
red - RT/zF ln aRed / aOx---- (15).

For the case of a complete electrochemical reaction 
(full cell), the equation can be written as:

Ecell = E
o

cell - RT/zF ln Qr---- (16), 
where Ered is the half-cell reduction potential at the 

temperature of interest,
Eo

red is the standard half-cell reduction potential,
Ecell is the cell potential (electromotive force) at the 

temperature of interest,
Eo

cell is the standard cell potential,
R is the universal gas constant: R = 8.31446261815324 

J K−1 mol−1,
T is the temperature in kelvins,
z is the number of electrons transferred in the cell 

reaction or half-reaction,
F is the Faraday constant, the number of coulombs per 

mole of electrons F = 96485.3321233100184 C mol−1,
Qr is the reaction quotient of the cell reaction, and a is 

the chemical activity for the relevant species, where aRed is 
the activity of the reduced form and aOx is the activity of 
the oxidized form.

Thus, the designer has to optimize a large number 
of parameters to harness maximum ambient power after 
the efficient modeling of the Spintronic device. This is a 
complex process, which requires the skill, and experience 
of the designer, sometimes requiring the software to 
optimize and maximize the result. 

3. DISCUSSION AND CONCLUSION
The interdisciplinary research of Spintronics and Quantum 
Thermodynamics for harnessing Ambient energy is 
drawing the attention of various researchers and device 
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designers. The topic is on a sound footing and evolving 
fast.
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