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Abstract
This paper analyzes the evolution process of China’s coal 
prices formation mechanism and the trend of dynamic 
weekly data of Datong mix coal in Qinhuangdao market 
from January 2004 to December 2013. Resorting to 
the jump diffusion models and cumulants estimation, 
the empirical study on the phenomenon of coal prices 
fluctuations is executed. These results show that coal 
prices dynamics are characterized by high volatility, high 
intensity jumps, and upward drifts, and are concomitant 
with underlying fundamentals of coal markets and China’s 
economy. Furthermore, markets expected coal prices to 
still remain volatile and jumpy with higher probability and 
stay in jump for the next couple of years.
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INTRODUCTION
Coal is the affordable foundation energy for the sustaining 
development of economy, and remains more than 
65% in the structure of primary energy production and 
consumption in China. The coal prices in China were in 
a high stage in recent years and reached the historical 

record in the first half of 2008. Qinhuangdao mixed coal 
weekly closing prices reached 1000 Yuan/ton in July 
14, 2008, and the annual average prices 770 Yuan/ton 
averagely increases 53.5% comparing with the 502 Yuan/
ton in 2007. Coal prices dynamics is relevant for hedging, 
forecasting and making policy, thus it is important for coal 
enterprises to find the characteristics of prices fluctuations 
and analyze the long term dynamic in coal prices. 

Current researches concentrate on the influential 
factors for the coal prices, including its risk assessment 
and coal industry downstream demand, etc. But it has 
been the hotspot to effectively descript the long term 
dynamic in coal prices. Yang and Song (2005) analyzed 
the fluctuation characteristics of world coal prices and 
summarized its periodic trends during 1981-2005. Ning 
(2001) built compound wavelet neural network model to 
predict the coal prices in international market. In the light 
of the random Brownian motion features of commodity 
prices, Wang (2008) used recursive prediction method 
to forecast the coal prices in Shaanxi province in China. 
Zhang and Jiang (2007) adopted the ARIMA model to fit 
the trend of coal prices during 1977-2005. Zou and Zhang 
(2010) considered that under general circumstances, the 
geometric Brownian motion can be well fitting coal prices. 
For more details about the long term dynamic in China’ 
coal prices, we refer the reader to Li, Wang, & Lv (2012), 
Yang, Nie, & Liu (2009), Liu (2008) among others.

Study on the nonlinear features of coal prices in these 
articles is not enough, especially less attention on the 
fluctuation of coal prices. Hence, we will analyze the 
long term dynamic of coal prices to make the best use of 
the current market situation and provided data support in 
making decisions for the coal enterprises.

1.  HISTORICAL COAL PRICES ANALYSIS
With a view to concentrating on recent coal prices 

dynamics, we choose weekly spot prices of Datong mixed 
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coal delivered at Qinhuangdao Port from 2004 to 2013, 
containing 488 observations. Data are collected from 
China Coal Market Online (http://www.cctd.com.cn).

Figure 1 
Observed Weekly Spot Prices of Datong Mixed Coal

Figure 1 shows spot prices for the full sample period. 
It clearly shows that fluctuation of coal prices is very 
large from 2004 to 2013. The coal prices are moving 
upward, and have become predicable. After each peak, 
coal prices seemed to retreat temporarily then re-trend 
toward higher peaks. Let tP  be the coal prices in Yuan/ton, 
an augmented Dickey-Fuller test (Table 1) indicated that 

tP  possessed a unit root; it was pulled by a strong upward 
trend, showing no sign for mean reversion. However, the 
first difference tP , defined as 1t t tP P P−∆ = − , was stationary.

Table 1 
Time-series Properties of Coal Prices

Augmented Dickey-Fuller (ADF) unit-root test on coal prices

Null hypothesis: tP  has a unit root 

ADF test statistic=-0.59; probability value=0.85

Test critical values: 1% (-3.44); 5% (-2.86); 10% (-2.57)

Null hypothesis: 1t t tP P P−∆ = −  has a unit root

ADF test statistic=-24.35; probability value=0.00

Test critical values: 1% (-3.44); 5% (-2.86); 10% (-2.57)

Additional insight into coal prices dynamics is gained 
by analyzing log return defined as 1log log logt t tP P P−∆ = −  
The graph for these changes (Figure 2) shows that jumps 
in coal prices were frequent and had a relatively high 
probability. The 2.06% weekly standard deviation is 
turned into a 17.53% annual volatility. The distribution 
was right-skewed, implying that upward jumps of larger 
size were more frequent than downward jumps of small 
size; as the mean was positive and high, smaller jumps 
were outweighed by larger jumps. The distribution 
had also fat tails, meaning that large jumps tended to 
occur more frequently than in the normal case. These 
empirical findings on coal prices were typical of financial 
time series as noted in Clark (1973), Fama (1965) and 
Mandelbrot (1963). These facts strongly suggested 
modeling the coal prices process as a jump-diffusion.

Figure 2 
Coal Prices Return Distribution. 
Note. mean=0.15, standard eviation=2.06, skewness=1.53, 
kurtosis=39.72, Jarque-Bera normality statistics=275, p-value=0.0.

Volatility measures uncertainty and sensitivity of prices 
to news and shocks, and is a key parameter in option 
pricing. Volatility was also computed using a GARCH 
model for data on weekly coal prices covering full sample 
in Figure 3. The fitting of the GARCH model showed 
high prices volatility, periods of volatility clustering, 
followed by some reversion to a mean volatility estimated 
at 18 percent. GARCH volatility was rising during period 
of large prices shocks, simulating speculation and leading 
to volatility clustering; it was, however, receding during 
periods of prices retreat. It implied that coal markets were 
constantly experiencing large uncertainties and were 
affected by frequent shock.

Figure 3 
Estimated GARCH (1,1) Volatility

2.  COAL PRICES AS A JUMP-DIFFUSION 
PROCESS

2.1  Jump-diffusion Process
Based on the empirical findings discussed in the previous 
section, namely the presence of skewness and kurtosis 
in the empirical distribution of coal prices returns, an 
adequate model for coal prices would be a jump-diffusion 
model. In fact, it is well-known that options have market 
implied volatilities that exhibit a significant skew across 
strikes. In this connection, Bakshi, Cao, & Chen (1997) 
argued that pure diffusion based models could not 
adequately explain the smile effect in option prices and 

.
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emphasized the importance of adding a jump component 
in modeling asset prices dynamics. In the same vein, Bates 
(1966) also suggested that diffusion-based stochastic 
volatility models could not explain skewness in implied 
volatilities, except under implausible values for the 
model’s parameters. Models with jumps generically lead 
to significant skews for maturities. More generally, adding 
jumps to returns in a diffusion-based stochastic volatility 
model, the resulting model can generate sufficient 
variability and asymmetry to match implied volatility 
skews for maturities.

According, the continuous-time stochastic process 
driving coal prices can be stated as J-D process given by a 
stochastic differential equation (SDE):

(exp( ) 1) ,t
t t t

t

dP dt dW J dN
P

α σ= + + −        (1)

where tP  denotes the weekly coal prices, α  is the 
instantaneous return, and 2σ  is the instantaneous variance. 
The continuous component is given by a standard 
Brownian motion tW , distributed as ~ (0, )tdW N dt . The 
discontinuities of the prices process are described by a 
Poisson counter tN , characterized by its intensity λ  and 
jump size tJ . The Brownian motion and the Poisson 
process are independent. The intensity of the Poisson 
process describes the mean number of arrivals of abnormal 
information per unit of time expressed as ( 1)tP N dtλ∆ = =  
and ( 0) 1tP N dtλ∆ = = − .  When abnormal information 
arrives, coal prices jumps from 1tS −  to 1exp( )t t tS J S −= . The 
percentage change is measured by exp( ) 1tJ − . The jump 
size tJ , is independent of tW  and tN , and is assumed to 
be normally distributed 2~ ( , )tJ N α β . Letting lnt tX P=  
and using Ito’s lemma, thus the log-prices return process 
becomes: 
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The parameter vector associated with the prices 
process is therefore 2 2( , , , , )θ µ σ λ β δ= . Discretized over 
( , )t t t+ ∆ , the model takes the form:
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w h e r e  (0, )t t t tW W W N t+∆∆ = − ∆� ,  a n d  t t t tN N N+∆∆ = −  
is the actual number of jumps occurring during the 
time interval ( , )t t t+ ∆ , and iJ  are independently and 
identically distributed as 2( , )iJ N β δ� . The log-return, 

t tx X= ∆ , therefore includes the sum of two independent 
components: a diffusion component with drift and a jump 
component. Its probability density is a convolution of two 
independent random variables and can be expressed as:
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Putting 1t∆ = , i.e., the time interval is ( , 1)t t + , the 
density function becomes
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2.2  The Method of Cumulants
Press (1967) used the method of cumulants as described 
in Kendall and Stuart (1977) to estimate the J-D models. 
Define the characteristic function of tX  as:

2 2 2 2

( ) [exp( )] exp( ) ( )

          = exp exp 1 ,
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∫
         

where ( )tf X is the probability density function of tX , u  
is the transform variable, and 1 i− =  The cumulants of tX , 
denoted by nω , 0,1, 2,n =  , are the coefficients in the power 
series expansion of the logarithm of the characteristic 
function of tX , expressed as:
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It follows that the first four cumlants of the J-D 
process are:
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Obviously, the cumulants enable to recover J-D 
parameters from sample moments (Cumulants one). In 
order to avoid using higher order cumulants, Press (1967) 
imposed the restriction 0µ =  and derived the following 
relations (Cumulants two):

2
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1 1 1

2 2
2 2 23 1 3 11

2
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Press’ estimates often carried wrong-sign and were 
not plausible. Beckers (1981) adopted the same method 
as Press, however, setting β , instead of µ , to zero 
(Cumulants three). Using sixth order cumulants, his 
cumulant equations yielded the following system:

Beckers’ estimates improved those of Press, yet they 
were not free of anomalies. Ball and Torous (1985), 
using a Bernoulli, instead of a Poisson, jump process 
and maintaining Beckers’ restriction 0β = , derived the 
following cumulant equations (Cumulants four):

2 2 2
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Again by equating with population cumulants, they 
obtained these estimators 2ˆˆ̂ , ,µ λ σ  and 2δ̂  given by:
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3.  EMPIRICAL ANALYSIS
Based on a sample of weekly prices for Datong mix 
coal described in Section 2, jump diffusion process was 
estimated using cumulants method both unrestrictedly 
and under the assumption of a Bernoulli jump-diffusion 
process. The estimated parameters for the jump diffusion 
model are given in Table 2. Alternative estimations of 
jump diffusion model, except Cumulants two, yielded 
parameters estimates that were consistent with empirical 
features of coal prices discussed in Section 2. They 
showed pointedly that the dynamics of the coal prices 
process were influenced by both diffusion and jump 
component: however the jump component was dominant. 
Besides having high intensity, the jump components had 
a much higher variance than the diffusion component. 
The high variance of the jump component illustrated 
the presence of jumps of large magnitude and was 
in conformity with excess kurtosis in the empirical 
distribution of coal prices log returns. The mean of the 
jump size tended to be positive, in line with positive 
skewness in the empirical distribution. This was due to 
the fact that coal prices were not monotonic; they leapt 
forward, than retreated back in smaller movements before 
taking a new jump. The drift of the diffusion component 
was high, in conformity with the observed upward trend 
in coal prices; it illustrated the presence of a force that 
kept pushing coal prices upward.

Table 2 
Parameters Estimates of Jump Diffusion Models

Method Drift
µ

Variance
2σ

Intensity
λ

Mean
β

Variance
2δ

Cumulant one
Cumulant two
Cumulant three
Cumulant four

0.20
0.00
0.34
0.22

3.04
5.23
3.08
3.07

0.14
0.08
0.18
0.15

1.17
1.89
0.00
1.16

7.46
-10.84
7.39
6.95

By using of Cumulants one in J-D model, intensity 
of the jump process, estimated at ˆ 0.14λ = , was high and 
significant, indicating that the coal prices processes were 
characterized by frequent jumps. Drift of the diffusion 
component, estimated at ˆ 0.20µ = , was high, implying 
that coal prices were constantly under pressure to 
move upward. The variances of the diffusion and jump 
components, were respectively estimated at 2ˆ 3.04σ =
and 2ˆ 7.46δ = , indicating that the jump component tended 
to dominate the dynamics of the coal prices process. 
The mean of the jump component, estimated at ˆ 1.17β =
, was positive and consistent with the positive skewness 
in coal prices returns. Application of Cumulants two, 
with restriction 0µ = , yielded implausible results for the 

variance of the jump component, namely 2ˆ 10.84δ = − . Such 
an anomaly was not unexpected, indicating that the 
restriction 0µ = , could not be borne by the data, and was in 
sharp contrast with the strong upward trend in coal prices. 

In contrast, Cumulants three, with restriction 0β = , yielded 
results which were highly plausible. The drift component of 
the diffusion, estimated at 0.34µ = , was larger than in the 
Cumulants one case, since 0β =  implied less influence for 
the drift of the diffusion, compared to the case when β  
was positive, to maintain an upward trend in coal prices. 
The variances of the diffusion and jump components were 
high, 2ˆ 3.08σ = and 2ˆ 7.39δ = , respectively. The variance 
of the jump component, however, dominated that of 
the diffusion component. Noticeably, jump intensity, 
estimated at ˆ 0.18λ = , is the frequency of jumps in coal 
prices exceeding ±3% computed from the data set.

Assuming a Bernoulli jump-diffusion process, 
Cumulants four estimates were significant. Drift of the 
diffusion component, estimated at ˆ 0.22µ = , was high 
and significant, showing that coal prices were constantly 
under upward pressure. The variances of the diffusion 
and jump components were high and significant, 2ˆ 3.07σ =
and 2ˆ 6.95δ = respectively. The probability of a jump 
computed at ˆ 0.15λ =  was significant. The mean of the 
jump component, estimated at ˆ 1.16β = , was positive and 
consistent with positive skewness observed in the data.

Figure 4 
Normal Probability Plots for the Jump Diffusion 
Model

In sum, except for Cumulants one method, parameter 
estimates of the jump diffusion were fully concordant 
with the data. They established that the drift component 
of the diffusion process was very high for weekly data, 
indicating that coal demand was pushed up by a strong 
income effect; consequently, coal prices were under a 
constant pressure to move upward. However, the coal 
prices process was dominated by a jump process, with 
large discontinuities occurring at high intensity. 

Finally, a useful model diagnostic is provided by the 
residuals obtained from the discrete model (Eq. (2)) which 
implies that

~ (0,1).t t t
t

Y J Q Nµε
σ

− −
=               (13)

where 1ln - lnt t tY P P−= . The estimated residuals should 
therefore be approximately (0,1)N . Figure 4 shows the 

(12)
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normal probability plots for the jump diffusion model. It is 
clear that the residuals for the J-D model show no strong 
signs of being non-normal. We also tested the normality 
of the estimated residuals formally using the Jarque-
Bera test. The test could not reject the null hypothesis 
of normality for the jump diffusion at 5% standard 
confidence level; the p -value of the test was 0.092.

CONCLUSION
We have analyzed coal prices dynamics as represented 
by the Datong mix weekly prices during the period 
2004-2013. Estimates of parameters and latent variables 
were obtained using the Cumulants method. Our main 
findings are that these dynamics are dominated by strong 
upward drift and frequent jumps, causing coal markets 
not to settle around a mean. While coal prices attempted 
to retreat following major upward jumps, there was a 
strong positive drift which kept pushing these prices 
upward. Volatility was high, making coal prices very 
sensitive to small shocks and to news. The findings for 
the jump diffusion specification were fully consistent with 
underlying fundamentals for coal markets and domestic 
economy. More specifically, faster world economic 
growth during the sample period and highly expansionary 
monetary policies caused demand for coal to expand at 
a similar pace. Given prices inelastic coal demand and 
supply, any small excess demand (supply) would require 
a large prices increase (decrease) to clear coal markets; 
hence, the observed high intensity of jumps and the strong 
stimulus for coal prices to rise.

Our findings are relevant for policymakers and 
industry analysts. The results establish the nature of 
the stochastic process underlying coal prices and the 
importance of the components driving this process. 
Process parameter estimates could be seen to convey 
the effect of expansionary macroeconomic policies on 
coal prices during the sample period. Moreover, our 
modeling approaches are highly relevant for forecasting, 
risk management, derivatives pricing, and gauging 
the market’s sentiment. Our findings should be also 
helpful for developing and monitoring these policies for 
stabilizing Chinese coal markets.
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