Dye-Sensitized Solar Cells Using Surface-Stabilized Nanocrystalline-TiO2 Electrodes Coated by Epoxy Polymer
Abstract
In order to improve the thermal durability of dye-sensitized solar cells, epoxy polymer was coated on dyed-TiO2 electrode to prevent dye desorption under heating condition over 80 °C. The covering effect on epoxy polymer was confirmed using impedance spectroscopy. Using the epoxy polymer coating with Z907 Ru dye and ionic liquid electrolyte, the DSC photovoltaic durability was improved up to 90 °C, which is the highest temperature published for the DSC durability test. Although the epoxy polymer suppressed the DSC photovoltaic effect, it enhance the thermal durability; DSC coated epoxy polymer on the dyed-TiO2 electrode was able to prolong the efficiency over 90% of the initial value at 90 °C for 550 hours.
Key words: Dye-sensitized solar cells; Epoxy polymer; Ionic liquid electrolyte; Thermal durability; Heat test
Keywords
Full Text:
PDFReferences
[1] Moser, J. (1887). Notiz über Verstärkung Photoelektrischer Ströme Durch Optische Sensibilisirung. Monatshefte fur Chemie, 8, 373.
[2] Nazeeruddin, M. K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., et al. (2005). Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc, 127, 16835-16847.
[3] O’Regan, B., & Grätzel, M. (1991). A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature, 353, 737-740.
[4] Kay, A., & Grätzel, M. (1996). Low Cost Photovoltaic Modules Based on Dye Sensitized Nanocrystalline Titanium Dioxide and Carbon Powder. Solar Energy Mater. Solar Cells, 44, 99-117.
[5] Sekiguchi, T., Kambe, S., Tani, M., Kitagaki, T., & Takahama, K. (2008). Improvement of Durability of Dye-Sensitized Solar Cells for Indoor Applications. Panasonic Denko Gihou (written in Japanese), 56, 87-91.
[6] Liu, K.-Y., Hsu, C.-L., Chang, S.-H., Chen, J.-G., Ho, K.-C. & Lin K.-F. (2010). Synthesis and Characterization of Cross-Linkable Ruthenium Complex Dye and Its Application on Dye-Sensitized Solar Cells. J. Polymer Sci., 48, 366-372.
[7] Ito, S., Murakami, T. N., Comte, P., Liska, P., Grätzel, C., Nazeeruddin, M. K., et al. (2008). Fabrication of Thin Film Dye Sensitized Solar Cells with Solar to Electric Power Conversion Efficiency over 10%. Thin Solid Films, 516, 4613-4619.
[8] Mohmeyer, N., Kuang, D., Wang, P., Schmidt, H-W., Zakeeruddin, S. M., & Grätzel M. (2006). An Efficient Organogelator for Ionic Liquids to Prepare Stable Quasi-Solidstate Dye-Sensitized Solar Cells. J. Mater. Chem. 16, 2978-2983.
[9] Kuang, D., Ito, S., Wenger, B., Klein, C., Moser, J.-E., Humphry-Baker, R., et al. (2006). High Molar Extinction Coefficient Heteroleptic Ruthenium Complexes for Thin Film Dye-Sensitized Solar Cells. J. Am. Chem. Soc., 128, 4146-4151.
[10] Ito, S., Liska, P., Charvet, R., Comte, P., Péchy, Nazeeruddin, M. K., et al. (2005). Control of Dark Current in Photoelectrochemical (TiO2/I-–I3-) and Dye-Sensitized Solar Cells. Chem. Commun. 4351-4353.
[11] Wang, P., Zakeeruddin, S. M., Exnar, I., & Grätzel, M. (2002). High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte. Chem. Commun., 2972–2973
[12] Ito, S., Matsui, H., Okada, K., Kusano, S., Kitamura, T., Wada, Y., et al. (2004). Calibration of Solar Simulator for Evaluation of Dye-Sensitized Solar Cells. Sol. Energy Mater Sol. Cells, 82, 421-429.
[13] Han, L., Koide, N., Chiba, Y., & Mitate, T. (2004). Modeling of an Equivalent Circuit for Dye-Sensitized Solar Cells. Appl. Phys. Lett., 84, 2433-2435.
[14] Barsoukov, E., & Macdonald, J. R. (Eds.). (2005). Impedance Spectroscopy. Theory, Experiment and Application (2nd ed.). New Jersey, USA: John Wiley & Sons, Inc..
[15] Wang, Q., Moser, J.-E., & Grätzel, M. (2005). Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells. J. Phys. Chem. B, 109, 14945-14953.
[16] Ito, S., Zakeerudding, S. M., Comte, P., Liska, P., Kuang, D., & Grätzel M. (2008). Bifacial Dye-Sensitized Solar Cells Based on an Ionic Liquid Electrolyte. Nature Photon., 2, 693-698.
DOI: http://dx.doi.org/10.3968/j.est.1923847920110202.125
DOI (PDF): http://dx.doi.org/10.3968/g2091
Refbacks
- There are currently no refbacks.
Copyright (c)
Reminder
If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the CATEGORIES, or JOURNALS A-Z on the right side of the "HOME".
We only use three mailboxes as follows to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases: caooc@hotmail.com; est@cscanada.net; est@cscanada.org
Articles published in Energy Science and Technology are licensed under Creative Commons Attribution 4.0 (CC-BY).
ENERGY SCIENCE AND TECHNOLOGY Editorial Office
Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.
Telephone: 1-514-558 6138
Website: Http://www.cscanada.net Http://www.cscanada.org
E-mail: est@cscanada.net; est@cscanada.org
Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures