Study of Electrical Parameters and Energy Efficiency in Photogalvanic Cell Containing Erythrosine as a Photosensitizer in Benzethonium Chloride – EDTA System

Anju Chouhan, K.R. Genwa

Abstract


Photogalvanic effect was studied in a photogalvanic cell containing Erythrosine as photosensitizer in Benzethonium Chloride EDTA system . A sintered filter was used in H-cell between the diffusion length. In Erythrosine - Benzethonium Chloride - EDTA system the photopotential and photocurrent were observed 890.0 mV and 250.0 mA respectively. The conversion efficiency of the system was observed 0.8282 % and fill factor was determined as 0.33. The cell performance was observed 95.0 minutes in dark. The effects of different parameters on the electrical output of the cell and current-voltage (i-V) characteristics of the cell were studied. A mechanism was also proposed for the generation of photocurrent in photogalvanic cell.

Key words : Photogalvanic effect; Erythrosine; Benzethonium Chloride; Fill factor; Conversion efficiency


Keywords


Photogalvanic effect; Erythrosine; Benzethonium Chloride; Fill factor; Conversion efficiency

Full Text:

PDF

References


[1] Rideal , E.K. & Williams, D.C. (1925).The action on the ferrous iodine iodide equilibrium. J. Chem Soc, 127, 258-269.

[2] Rabinowitch, E. (1940). The photogalvanic effect I: the photochemical properties of the thionine-iron system. J. Chem Phy, 8, 551-559.

[3] Rabinowitch, E. (1940).The photogalvanic effect II: the photogalvanic properties of the thionine-iron system. J. Chem Phy, 8, 560-566.

[4] Potter , A. C. & Thaller, L.H. (1959). Effeciancy of some iron-thionine photogalvanic cell. Solar Energy, 3, 1-7.

[5] Goomer, R. (1975). Photogalvanic cell. Electrochimica Acta, 20, 13-20.

[6] Albery, W.J. & Archer, M.D. (1976). The potential of zero current. Electrochimica Acta, 21, 1155-1163.

[7] Peter, D., Wildes, David, R., Hobart, Norman, N., Litchin, dale, E., Hall, John, A. & Eckert. (1977). Sensitization of an iron-thazina photogalvanic cell to the blue: An improved match to the insolation spectrum. Solar Energy, 19, 567-570.

[8] Wildes, P.D & Lichtin, N.N. (1978). Indirect measurement of thionine-leucothionine synproportionation rate constant by a photochemical perturbation technique. J. Phy. Chem, 82, 981-984.

[9] Murthy, A.S.N., Dak, H.C. & Ready, K.S. (1980). The photogalvanic effect in a riboflavin-ethylenediamin tetra acitic acid system. Int. J. Energy Res, 4, 339.

[10] Hall, D.E., Wildes, P.D. & Litchin, N.N. (1978). Electrodic phenomina at the anode of totally illuminated, thin layer iron thionine photogalvanic cell. J. Electrochem. Soc, 125, 1365-1371.

[11] Hoffman, M.Z. & Lichtin, N.N. (1979). Solar energy, 21, 153.

[12] Ameta, S.C., Gangotari, K.M. Ameta, R., & Dubey, G.C. (1990). Use of methylene blue – mannitol system in photogalvanic cell for solar energy conversion. Acta Ciencia Indica, XIV C, 35.

[13] Ameta, S.C., Khamesra, Lodha, A. & Gangotari, K.M. (1991). Use of Brij-35 in Photogalvanic cell for Solar Energy Conversion and Storage: methylene blue-EDTA System. Chimka Chronicka new series A, 20, 169.

[14] Ameta, S.C., Gangotri, K.M., & Dubey,T.D. (1990). use of Tuluidine Blue- Maleic Hyderazide system in photogalvanic cell For solar energy conversion. Asian J. of Chemistry, 2, 19.

[15] Gangotri, K.M., Meena,R.C. & Meena Rajni, (1999). Use of miscelles in photogalvanic cells for solar energy conversion and storage: cetyl trimethyl ammonium bromide-glucose-toluidine blue system. J. Photochem. Photobiol.A: Chem, 123, 93-97.

[16] Gangotri, K.M. & Lal, C. (2001). Use of mixed dyes in photogalvanic cell for solar energy conversion and storage: EDTA methylene Blue and Azur-B system. Energy Sources part A: recovery. Utilization and environmental effects, 23, 267-273..

[17] Gangotri K.M. and Meena. R.C. 2001. Use of reducatnt and photositizer in photogalvanic cell for solar energy conversion and storage: oxalic acid – methyline blue system. J. Photochem. Photobiol. A : Chem., 141, 175-177.

[18] Gangotri, K.M., Gunsaria, R.K. and Meena, R.C. (2003). Use of surfactant in photogalvanic cell for solar energy conversion and storage: NaLS-Glycerol-Azur A. AFINIDAD, 60, 563-567.

[19] Gangotri, K.M. & Gangotri, P. (2009). Studies of micellar effect on Photogalvanic: Solar Energy conversion and storage in EDTA Safranine O-Tween-80 system. Energy & Fuels, 23, 2767-2772.

[20] Genwa, K.R. & Gangotri, K.M. (2004). Comparative studies in anionic cationic and non ionic surfactant in photogalvanic cells for solar energy conversion and storage. Point of view: Nitrilotriacidic – Azur B system. J. Ind. Chem. Soc., 81, 592-594.

[21] Genwa, K.R. & Gangotri, K.M. (2004). Studies on photogalvanic cell containing Azur B-NTA-CPC system. J. Ind. Council. Chem., 21, 21-25.

[22] Genwa , K.R. & Chouhan, A. (2004). Study of photogalvanic effect in Azur C NaLS ascorbic acid system. Res. J. Chem. Environ, 8, 55-58.

[23] Genwa, K.R. & Chouhan, A. (2006). Role of heterocyclic dye (Azur A) as a photosensitizer in photogalvanic cell for solar energy conversion and storage: NaLS-ascorbic acid system. Solar Energy, 80, 1213-1219.

[24] Genwa , K.R. & Chouhan, A. (2004). Studies of effect of heterocyclic dye in photogalvanic cell for solar energy conversion and storage NaLS -ascorbic System J. Chem. Sci., 116, 339-345.

[25] Genwa, K.R., Chouhan, A., Mahaveer, and Prakash, I. (2006).Study of photogalvanic cell containing AZUR B-NaLS-Ascobic acid system. J. Indian Chem. Soc., 83, 799-802.

[26] Genwa, K.R., Mahaveer, and Prakash, I. (2006). Photogalvanic effect: comparative studies in three dyes Rhodamine B, methylene Blue and Safranin. J. Indian Chem. Soc., 83, 165-167.

[27] Genwa, K.R. & Khatri, N.C. (2006). Role of Azine Dyes as Photosensitizer in photogalvanic cell: for solar energy Conversion and storage : Brij 35-Safranine-DTPA system Int. J. Chem. Sci., 4, 703-712.

[28] Genwa, K.R. & Khatri, N.C. (2007). Brij-35-Bismark Brown – DTPA System In Photogalvanic Cell. J. Indian Chem. Soc., 84, 269-272.

[29] Genwa, K.R. & Mahaveer (2008). Photogalvanic cell: a new approach for green and sustainable chemistry. Solar Energy Mat. & Solar Cell., 92, 522-529.

[30] Genwa, K.R. & Kumar, A. (2009).Studies in Nile blue-NaLS System for solar energy conversion and Management: phtogalvanic performance and Conversion Efficiency. J. Ind. Council Chemist, 26, 181-186.

[31] Genwa , K.R., Kumar, A. and Sonel, A. (2009).photogalvanic solar cell conversion: study with photosensitizers toludine blue and melachite green in presence of NaLS. Applied Energy, 86, 1431-1436.

[32] Genwa ,K.R. & Sonel, A. (2007). Photogalvanic cell: study of Toluidine Blue-Arabinose-CPC system in view of electrical parameters. Bull. Electrochemistry, 23, 243-246.

[33] Genwa ,K.R. & Khatri, N.C. (2009). Comparative study of photosentizing dyes in photogalvanic cells of solar energy and storage: Brij-35-DTPA system. Energy & Fuels, 23, 1024-1031.




DOI: http://dx.doi.org/10.3968/j.est.1923847920110201.651

DOI (PDF): http://dx.doi.org/10.3968/pdf

Refbacks

  • There are currently no refbacks.


Copyright (c)




Share us to:   


Reminder

If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the CATEGORIES, or JOURNALS A-Z on the right side of the "HOME".

We only use three mailboxes as follows to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases: caooc@hotmail.com; est@cscanada.net; est@cscanada.org

 Articles published in Energy Science and Technology are licensed under Creative Commons Attribution 4.0 (CC-BY).

 ENERGY SCIENCE AND TECHNOLOGY Editorial Office

Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.
Telephone: 1-514-558 6138 
Website: Http://www.cscanada.net Http://www.cscanada.org 
E-mailest@cscanada.net; est@cscanada.org

Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures