
88

 ISSN 1712-8056[Print]
ISSN 1923-6697[Online]

 www.cscanada.net
www.cscanada.org

Canadian Social Science
Vol. 15, No. 8, 2019, pp. 88-95
DOI:10.3968/11267

Copyright © Canadian Academy of Oriental and Occidental Culture

Dynamic Programming Algorithm for Public Crisis Management Scheme

XIAO Hongfei[a],*

[a] Lecturer, Department of Management, Sichuan Conservatory of Music,
Chengdu, China.
*Corresponding author.

Received 9 May 2019; accepted 15 August 2019
Published online 26 August 2019

Abstract
At present, social media is developing rapidly, and
the frequency of public crises is increasing, which
has a certain impact on social stability. This paper
studies the public crisis management measures based
on dynamic programming algorithm. According to the
knapsack problem of public crisis management, dynamic
programming algorithm was designed, and the traditional
dynamic programming algorithm came up, then 5 different
types of data sets used for three dynamic programming
algorithms were run 10 times in the 5 different types
of experimental data sets. The test results show that the
efficiency of the algorithm proposed in this paper is
improved.
Key words: Dynamic programming algorithm; Public
crisis; Knapsack problem

Xiao, H. F. (2019). Dynamic Programming Algorithm for Public Crisis
Management Scheme. Canadian Social Science, 15(8), 88-95. Available
from: http://www.cscanada.net/index.php/css/article/view/11267
DOI: http://dx.doi.org/10.3968/11267

INTRODUCTION
Dynamic programming is an abstract, which is difficult to
grasp but a very important method in the basic algorithm
design method. (Wong, et al, 2015). On the basis of
optimization theory, dynamic programming can efficiently
solve many problems which are difficult to solve by
search or greedy algorithm (Mehdi, et al, 2015). The
application field of the dynamic programming method

is very wide, and many important application problems
can be solved by dynamic programming method (Wu and
Srikanthan, 2006). For example, dynamic programming
method can be used for the shortest path, resource
allocation, large-scale time delay system of production
scheduling, gas production scheduling problem, the
longest common subsequence problem, goods merge,
in the environment and resources under the constraints
of the logistics enterprise, the enterprise site equipment
update, the longest increasing subsequence and inventory
management, guaranteed service selection, the optimal
combination of two binary search tree, knapsack problem,
various practical application problems (Hua, Yu, & Lau,
2010). Therefore, it is of great significance to understand
the dynamic programming design method to improve the
ability and solve practical application problems.

1. STATE OF THE ART
Currently, scholars are rich in research on dynamic
programming algorithm. Some scholars use dynamic
programming to design a shortest line model in a special
network diagram. When the stage and state variables
are large, the algorithm is inefficient (Tang and Gupta,
1995). In order to improve the efficiency of dynamic
programming in solving such complex multistage
decision problems, we propose a way to improve the
recursive way in dynamic programming, which improves
the unidirectional expansion to a bidirectional expansion
mode, and finally the two-way expansion will coincide at
a certain stage of the problem, and the algorithm will end.
The improved two way expansion dynamic programming
method and direct one-way algorithm can solve the
problem, but the time efficiency of two-way expansion
is better than the one-way recursive method (Wu, et al,
2014). Some scholars in the scheduling problem with
dynamic programming method to solve the reservoir,
the decision problem is a multi - stage into the two stage

89 Copyright © Canadian Academy of Oriental and Occidental Culture

XIAO Hongfei (2019).
Canadian Social Science, 15(8), 88-95

decision-making problem, diminishing marginal benefit in
the premise of the reservoir, they analyzed the relationship
between reservoir storage capacity optimal drainage
quantity and the optimal, and proposed that reservoir
operation is monotonous the nature, on the basis of the
original improved dynamic programming algorithm. The
experimental results showed that the improved algorithm
can get the optimal solution of the problem and reduce
the calculation time. (Jou Jonathan, et al, 2016). In
practical applications, when there are random factors in
the multistage decision process, the multistage decision
process is called a random decision process (Pombeiro,
Machado and Silva, 2015). The dynamic programming
method can also deal with the randomness. At this
moment, the corresponding dynamic programming method
is called random dynamic programming (Delipetrev,
Jonoski & Solomatine, 2015). In the stochastic dynamic
programming, the state of the next stage is not determined
by the state and the decision of the current stage. The state
of the next stage will obey a probability distribution. Of
course, the probability distribution is still determined by
the state and decision of the current stage. In addition,
the adaptive dynamic programming and multi-objective
constrained dynamic programming, and continuous
dynamic programming have also made great progress.
(Delipetrev, Jonoski & Solomatine, 2017).

2. METHODOLOGY

2.1 Design of Dynamic Programming Algorithm
for Public Crisis Processing
The knapsack problem is a classic combinatorial
optimization problem, which has a wide range of
applications in many fields, such as cargo loading,
investment portfolio, feeding problem and so on. The
knapsack problem is widely used in the field of selection
based on limited resources. Knapsack problem can be
described as: given the weight and value of a group of
goods, what items should be selected to maximize the total
value of goods within a defined total weight. Knapsack
problem can be derived from a series of related problems:
0/1 knapsack problem (only one item), complete knapsack
problem (items with infinite parts) and multiple knapsack
problem (goods with finite parts).A dynamic programming
idea is used to solve the complete knapsack problem
(multiple knapsack and complete knapsack problem
similar) and optimization.

First, we can describe the complete knapsack problem.
For a given n event, the importance of event I is wi, the

value is vi, each event has infinite parts, and the existing
knapsack capacity is w. What events should we do to
make the total value of events in the backpack maximum?
Describe this problem with mathematical expressions，
F i n d i n g t h e n v e c t o r),...,,(21 nxxx ，

∑
=

=
n

i
ii xvimizep

1

max ，And sat isfy the constra int

c o n d i t i o n s： }/,...2,1,0{,
1

ii

n

i
ii wwxwxv ∈≤∑

=

. T h e

complete knapsack problem is very similar to the 0/1
knapsack problem, but there are infinite pieces per event
in the complete knapsack problem. For each event, there
are only two decisions in the 0/1 knapsack problem:
choose or not. But in the complete knapsack problem, the
related strategy of the event is not only two kinds, but
there are a variety of strategies, such as selecting 0 pieces,
selecting 1 pieces, selecting 2 pieces, selecting  iww /

parts. Borrowing the idea of solving the 0/1 backpack
problem. The sub problem),(jim is defined as the

maximum value of event i based on knapsack capacity j.
Although there are infinite pieces per event, for a specific
event, there are still two strategies to put in a backpack or
no backpack. According to this, we can write the state
transfer equation:

}0,),,1(max{),(jwxvxwxjimjim iii ≤⋅≤⋅+−−=

（1）
The initial condition of the iteration is：

jwxvxjlm ≤⋅≤⋅= 11 0,),(（2）

This conventional dynamic programming algorithm is
called NDP(Normal Dynamic Programming)，The
algorithm flow is shown as shown in the diagram. The
algorithm (1) shows that：As with the 0/1 knapsack
problem, the complete knapsack problem also needs to
calculate the)(nwO sub problems, but the time for

calculating each sub problem will no longer be a constant
time but a)/(iwwO . Therefore, the time complexity of

the NDP algorithm is))/((iwwnwO , and the space

complexity is)(nwO .

Copyright © Canadian Academy of Oriental and Occidental Culture

Dynamic Programming Algorithm for Public Crisis
Management Scheme

90

init

j=0

j≤W j＜W1

i=2 j=j+1 m(1,j)=v1*j/w1 m(1,j)=0

i=2 i=i+1

j=0 j≤W

x=0,k=j/wi

x≤K

x=x+1

j=j+1

m(1,j)=max(m(i,j),m(i-1,j-
x*wi)+x*vi

end

N

Y

Y

N

Y

N

N

Y Y

Figure 1
Classic NDP algorithm flow chart
2.2 Improvement of Dynamic Programming
Algorithm
For the knapsack problem, the following optimization
measures can be considered: for two events, i、j, if

jiji vvww ≤≥ , is satisfied,
jiji vvww ≤≥ , cannot be

considered when putting events into knapsack. This
optimization measure is obviously correct: because in any
case, the i event will be replaced by a j event with high
importance and high value, and the total value of the
backpack will not be reduced. This optimized measure can
reduce the type of events and speed up the efficiency of
the algorithm execution. But in special circumstances (that
is, for any two events, I, J, there is no

jiji vvww ≤≥ ,

relationship), No event can be removed at this time, and
this measure will not optimize the time efficiency of the
algorithm.

Because the structure of complete backpack is similar
to that of 0/1 knapsack problem, there is only one event in
0/1 knapsack, but there are many events in complete
knapsack, so we can transform the full knapsack into 0/1
knapsack problem to solve. Due to the limitation of

backpack capacity, the i event in the complete knapsack
problem can only be selected at  iww / times. Therefore,

the i event can be transformed into the 0/1 knapsack
problem, and the  iww / value is wi value vi, and the

state transition equation is established as follows:





≥≤−
≥+−−−

=
i

iii

wjjim
wjvwjimjim

jim
0),1(

},),1(),,1(max{
),(

（3）

The initial condition of the iteration is：





≤
≥

=
iwj

wjv
jm

＜0,0
,

),1(11

（4）

But the above transformation method does not improve
the time efficiency of the algorithm. A more efficient way
of conversion is considered below, and a deduction is
proved before discussing the specific transformation
method. So we can deduce that any positive integer n can
b e d e c o m p o s e d i n t o a f o r m o f

91 Copyright © Canadian Academy of Oriental and Occidental Culture

XIAO Hongfei (2019).
Canadian Social Science, 15(8), 88-95

122...421 1 +−+++= − kk nn (where k is the largest

integer that satisfies the 012 ≥+− kn).Any positive

integer c, where],1[nc∈ can be represented as:

)12(1...421 210 +−×++×+×+×= − kkk nxxxxxc ,

where }1,0{∈c . This proves that an arbitrary positive

i n t e g e r n c a n b e d e c o m p o s e d i n t o
122...421 1 +−+++= − kk nn .The above mathematical

inference is applied to transform full knapsack into 0/1
knapsack problem. The former way of transformation is to
transform I event into  iww / event, which is wi value

vi. Due to the establishment of the above inference, the
transformation of the way is: after the conversion of each
event value is

ii vX ⋅ , the importance of
ii wX ⋅ , where

iX is 12/,2,...4,2,1 1 +−− k
i

k ww , this division, the I

event is divided into  )/(log iwwO parts, the problem

can be directly used for 0/1 knapsack problem dynamic
programming algorithm, the time complexity of the

p roposed a lgor i thm fo r
 )/log(

1
∑
=

n

i
iwwwO .Th i s

algorithm uses the binary idea to transform the complete
knapsack problem into the 0/1 knapsack problem and then
the algorithm is recorded as BDP. We give a brief
description of the BDP mode. The following is the path
problem that can be solved by BDP mode. Through BDP,
we can get various paths between different locations.

C1

B1 D1

C2

B2 D2

C3

A E

12

5 14

1
4
7

4

10

5
5

12 8

3 2

Figure 2
Path problem based on BDP mode

When calculating the sub problem),(jim , the NDP

algorithm refers to the states that have been solved in

 iwjx /= . In this paper, “each state transfer involved

the state number optimization mentioned: to solve the
problem with the dynamic programming algorithm is
virtually the process calculation in the problem definition,
calculation of the current state is often through solving the
state and this state has done decision. Therefore, when
calculating the state of each sub problem, the number of
states involved in the algorithm will affect the time
efficiency of the dynamic programming algorithm, and we
can consider the reduction of the number of states
involved in each state transfer to optimize the algorithm’s
time efficiency. By analyzing the state transfer equation
(1), it is found that when the operator problem),(jim is

considered, the equation refers to every decision
of  iwjx /,...,2,1,0= . Let  iwjx /= be analyzed. It is

found that the sub problem),(jwjim − that is solved

when calculating the sub problem),(jim is the maximum

value of the first i-1 event and the i event of x-1 part based
on the knapsack capacity

iwj − . The original state

transfer equation (1) repeats a large number of states
repeatedly when calculating the state of the sub problem,
so the state transfer equation can be optimized as follows:





≥≤−
≥+−−

=
i

iii

wjjim
wjvwjimjim

jim
0),1(
},),(),,1(max{

),(

（5）

Based on the original state of the state transition
equation (1) analysis found that each state transition
involves a large number of invalid state of state decision
dependencies, reducing the number of state each state
transition equation in each state, the state transfer number
involved is reduced from)/(iwwO to)1(O , the

algorithm the time complexity of the optimization for
)(nwO , s a i d t h a t t h e a l g o r i t h m f o r t h e O D P

(Optimization of Dynamic Programming) algorithm, as
shown in Figure 3. Reducing the number of states
involved in each state transfer in the algorithm is of great
significance in the optimization of dynamic programming
algorithms.

Copyright © Canadian Academy of Oriental and Occidental Culture

Dynamic Programming Algorithm for Public Crisis
Management Scheme

92

init

j=0

j≤W j＜W1

i≤2 j=j+1 m(1,j)=v1*j/w1 m(1,j)=0

i≤n i=i+1

j=0 j≤W

j≤wi

j=j+1

m(1,j)=max(m(i-1,j),m(i,j-wi)+viend

N

Y

Y

Y

Y

N

N

Y Y

m(i,j)=m(i
-1,j)

Figure 3
The flow chart of the ODP algorithm is presented in this article

In multiple knapsack problems, each event is not a
number of pieces, but a i event has a choice of mi. In
multiple knapsack, there are only }/,min{ iii wwmx =

decisions for i event: select 0 pieces, select 1 piece, select 2
pieces, and select xi pieces. The sub problem and the state
transfer equation of the multiple knapsack problems are very
similar to that of the complete knapsack problem. Therefore,
the dynamic programming algorithm and optimization
measures to solve the complete knapsack problem which
can also be applied to solve multiple knapsack problems
after proper modification, so this article will not repeat the
details of solving multiple knapsack problems.

3. RESULT ANALYSIS AND DISCUSSION
Complete the knapsack problem in order to verify the
dynamic programming optimization algorithm is correct
and effective, this section will be randomly generated
above 5 different types of data sets, so that three kinds
of dynamic programming algorithm was run 10 times in
the 5 different types of experimental data sets on average.
Assuming the capacity of the knapsack W=1000 is to
intuitively observe the time efficiency of the algorithm
under various scale data sets, the following are illustrated
in the form of graphs and tables.

Table 1
Operation Time/ms of the Algorithm When the Weight of the Item is in [150200) and [1200)

Scale
NDP BDP ODP NDP BDP ODP

[150,200) 1,200)
100 115 70 54 119 69 56
200 233 138 111 233 146 116
300 344 209 170 358 221 169
400 466 280 221 475 294 228
500 574 354 281 5 85 358 282
600 693 416 335 715 446 350
700 810 487 392 833 508 413
800 921 556 448 984 604 474
900 1035 628 506 1063 654 529

1000 1148 698 560 1147 709 563
1100 1254 772 611 1258 778 617
1200 1365 838 661 1366 840 664

93 Copyright © Canadian Academy of Oriental and Occidental Culture

XIAO Hongfei (2019).
Canadian Social Science, 15(8), 88-95

1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100

0
100 200 300 400 500 600 700 800 900 1000 1100120013000

NDP
BDP
The ODP algorithm

proposed in this paper

Quantity of goods

R
unning tim
e

(MS

)

Figure 4
The running time of the algorithm when the size of the problem is different (the weight of the item in the [1200)
distribution

From Table 1 and Figure 4, we can analyze from the
following two aspects: first, the influence of the importance
of events on the running time of NDP algorithm and BDP
algorithm when solving the complete knapsack problem.
The above experimental results show that when the two
algorithms are used to solve the complete knapsack problem
with different data classes (the importance distribution
of events), when the importance of events increases, the
time efficiency of algorithm will be improved accordingly.
From Figure 5, we can see that when we solve the
complete knapsack problem of the same data size, when the
importance distribution of events is from [1,50 to [50100,
[100150 to [1_50200, there will be some differences in
the time efficiency between NDP and BDP algorithm. For
example, when the number of events is n=100, the running
time of NDP algorithm is from 1390ms, 241ms, 153ms to
11_Sms, and the running time of BDP algorithm has the
same decreasing trend from 188ms, 116ms, 89ms to 70ms,

and other data sizes. To further demonstrate this conclusion.
we increase the importance distribution range of events
from [1,10, [10,20, [20,30 to [190200, and then measure the
running time of the algorithm separately, as shown in the
table. In the table, the number of events was 1000, when the
importance of the event distribution in [[1,10), long running
NDP and BDP algorithm, respectively 4_5283ms and
2772ms, and with the distribution range of the importance
of events gradually increased, the running time of the two
algorithms will be decreasing, when the importance of
the event distribution in [[190200), running time of NDP
algorithm and BDP algorithm are respectively 119_Sms
and 748ms. We also observed the relationship between
the running time of the algorithm and the importance
distribution of events. The results show that when the
importance of events becomes larger, the running time of
NDP and BDP algorithms is decreasing when solving the
same size full knapsack problem.

1200
0

8000

6000

5200

4400

3600

2800

2000

1300

400
10 20 30 40 50 60 70 80 90 100 110 120 1300

The distribution of the weight of the goods

R
unning tim
e

(MS

)

140 150 160 170 180 190 200

NDP
BDP
The ODP algorithm

proposed in this paper

Figure 5
Solving the complete knapsack problem of the same size of data. The effect of the distribution of the weight on
the time efficiency of the algorithm

Copyright © Canadian Academy of Oriental and Occidental Culture

Dynamic Programming Algorithm for Public Crisis
Management Scheme

94

The time complexity of the conventional dynamic
programming algorithm, NDP, is directly dependent on
the distribution of the importance of the event, as shown
in formula (1). The BDP algorithm uses the binary idea
to transform the complete knapsack problem into a 0/1
knapsack problem and then solve it again. While the size
and importance of the event will affect the capacity of the
knapsack that each event can be times into the backpack,
which influence the problem into the total number of
0/1 knapsack problem after the event, and the dynamic
programming algorithm for 0/1 knapsack problem time
complex number degree and is directly related to the event.
Therefore, in the BDP algorithm, the efficiency of the
algorithm is related to the distribution of the importance
of the event. The ODP algorithm proposed in this paper is
based on the NDP algorithm to reduce the number of states
that each state transfer depends on. The time efficiency
of algorithm is not directly related to the importance of
events. Therefore, the optimized algorithm ODP shows
basically consistent performance in multiple tests with the
same data size and different importance distributions.

The second aspect is the difference in time efficiency
between different dynamic programming algorithms
(NDP, BDP and ODP algorithm proposed in this paper)
in solving the complete knapsack problem with the same
data size and same data size. From Table 1, we can see
that the number of events in the table indicates that the
number of events remains unchanged, and the importance
distribution of events increases sequentially, which affects
the efficiency of various algorithms. We can compare
with each table in the transverse, then we can found that
regardless of the importance of the event distribution, this
paper presents the ODP algorithm in time efficiency than
the time and efficiency of NDP and BDP algorithm, the
number of cases when the event n=100, the importance
of events in [1, _50) randomly distributed, NDP, running
time of BDP algorithm and ODP algorithm respectively.
1390ms, 188ms and _59ms; when the importance of the
event in [1_50200) randomly distributed, the running
time of the three algorithms are 115ms, 70ms and _54ms;
when the importance of the event in [[1200) randomly
distributed, the running time of the algorithm are
119ms, 69ms and _56ms, these three kinds of situations,
compared ODP algorithm and NDP algorithm and BDP
algorithm, the time efficiency is high, and the importance
of NDP and BDP algorithm’s efficiency depends on the
incident, but the ODP algorithm in the event importance
range, algorithm show stable performance. The vertical
row in the table indicates the distribution of the
distribution of the importance of the event, and the effect
of increasing the number of events on the time efficiency
of the algorithm. From the table, we can see that when the
number of events increases, the running time of the three
algorithms will increase, but in the same event scale, the
running time of ODP algorithm is still smaller than the
running time of NDP and BDP algorithm. It is shown that

the time efficiency of ODP algorithm is higher than that of
NDP and BDP algorithm when the number of events and
the capacity of the knapsack change simultaneously in the
complete knapsack problem.

In general, the BDP algorithm is higher than NDP time
efficiency of the algorithm, because the BDP algorithm
will be completely transformed into the knapsack problem
0/1 knapsack problem using the binary thinking, thus
reducing the number of events after transformation and
NDP algorithm can be understood as the problem of direct
conversion. The proposed ODP algorithm is based on the
analysis of the conventional NDP algorithm, found each
state transition involves a large number of invalid state
of state effective decision dependencies, reducing the
number of state each state transition, which improves the
time efficiency.

CONCLUSION
With the rapid development of social media, the speed
of events spread faster and the public relations crisis
is more prone. Based on this, this paper studies the
public crisis management measures based on dynamic
programming algorithm by using computer technology.
First, a conventional dynamic programming algorithm
RDP for solving 0/1 knapsack problem is presented. Then,
by restricting the upper and lower bounds of the state in
the RDP algorithm, the number of states that needs to be
calculated is reduced, and the improved EDP algorithm is
obtained. Then, it discusses the complete solving knapsack
problem of general dynamic programming algorithm with
binary NDP and ideas will be completely transformed
into the knapsack problem 0/1 knapsack problem and
then solve the BDP algorithm, through the analysis of
the conventional NDP algorithm, each state transition
in the discovery process involving a large number of
invalid state, ODP algorithm analysis of effective state the
decision dependencies are optimized, the ODP algorithm
reduces the number of state each state transfer, improve the
time efficiency of the algorithm. Finally, experiments are
given to show the time efficiency of different algorithms in
solving the same data size knapsack problem. Experimental
results show that the improved algorithm proposed in this
paper has higher time efficiency.

REFERENCES
Delipetrev, B., Jonoski, A., & Solomatine, D. P. (2015). A

novel nested dynamic programming (nDP) algorithm
for multipurpose reservoir optimization. Journal of
Hydroinformatics, 17(4), 570-583.

Delipetrev, B., Jonoski, A., & Solomatine, D. P. (2017). A novel
nested stochastic dynamic programming (nSDP) and nested
reinforcement learning (nRL) algorithm for multipurpose
reservoir optimization. Journal of Hydroinformatics, 19(1),
47-61.

95 Copyright © Canadian Academy of Oriental and Occidental Culture

XIAO Hongfei (2019).
Canadian Social Science, 15(8), 88-95

Hua, Q. S., Yu, Y. X., & Lau, F. C. M. (2010). Dynamic
programming based algorithms for set multicover and
multiset multicover problems. Theoretical Computer
Science, 411(26), 2467-2474.

Jou Jonathan D., Jain Swati, J., Georgiev Ivelin S., Donald Bruce
R. (2016). BWM*: A novel, provable, ensemble-based
dynamic programming algorithm for sparse approximations
of computational protein design. Journal of computational
biology: A journal of computational molecular cell biology,
23(6), 413-24.

Mehdi, S., Sahar, P., Shahriar, A., & Bijan, R. (2005). Prediction
of protein secondary structure based on residue pair types
and conformational states using dynamic programming
algorithm. FEBS Letters, 579(16), 397-400.

Pombeiro, H., Machado, M. J., & Silva, C. (2015). Dynamic
programming algorithm for stochastic logical systems and
its application to residual gas fraction control. Proceedings

of the ISCIE International Symposium on Stochastic Systems
Theory and its Applications, 136-141.

Tang, D., & Gupta, G. (1995). An efficient parallel dynamic
programming algorithm. Computers and Mathematics with
Applications, 30(8), 65-74.

Wong, W. CW., Wong, S, YS., Jaakkimainen, L., Bondy, S.,
Tsang, K. KA, Lee, A. (2005). SARS: lessons to learn for
GPs when handling a public health crisis. British Journal of
General Practice, 55(510), 57.

Wu, J. G., & Srikanthan, T. (2006). Low-complex dynamic
the programming algorithm for the hardware/software
partitioning. Information Processing Letters, 98(2), 41-46.

Wu, Y. j., Wang, L., Zhu, D. X., & Wang, X. D. (2014).
An efficient dynamic programming algorithm for the
generalized LCS problem with multiple substring exclusive
constraints. Journal of Discrete Algorithms, 26, 98-105.

