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Abstract
At present, social media is developing rapidly, and 
the frequency of public crises is increasing, which 
has a certain impact on social stability. This paper 
studies the public crisis management measures based 
on dynamic programming algorithm. According to the 
knapsack problem of public crisis management, dynamic 
programming algorithm was designed, and the traditional 
dynamic programming algorithm came up, then 5 different 
types of data sets used for three dynamic programming 
algorithms were run 10 times in the 5 different types 
of experimental data sets. The test results show that the 
efficiency of the algorithm proposed in this paper is 
improved.
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INTRODUCTION
Dynamic programming is an abstract, which is difficult to 
grasp but a very important method in the basic algorithm 
design method. (Wong, et al, 2015). On the basis of 
optimization theory, dynamic programming can efficiently 
solve many problems which are difficult to solve by 
search or greedy algorithm (Mehdi, et al, 2015). The 
application field of the dynamic programming method 

is very wide, and many important application problems 
can be solved by dynamic programming method (Wu and 
Srikanthan, 2006). For example, dynamic programming 
method can be used for the shortest path, resource 
allocation, large-scale time delay system of production 
scheduling, gas production scheduling problem, the 
longest common subsequence problem, goods merge, 
in the environment and resources under the constraints 
of the logistics enterprise, the enterprise site equipment 
update, the longest increasing subsequence and inventory 
management, guaranteed service selection, the optimal 
combination of two binary search tree, knapsack problem, 
various practical application problems (Hua, Yu, & Lau, 
2010). Therefore, it is of great significance to understand 
the dynamic programming design method to improve the 
ability and solve practical application problems.

1. STATE OF THE ART
Currently, scholars are rich in research on dynamic 
programming algorithm. Some scholars use dynamic 
programming to design a shortest line model in a special 
network diagram. When the stage and state variables 
are large, the algorithm is inefficient (Tang and Gupta, 
1995). In order to improve the efficiency of dynamic 
programming in solving such complex multistage 
decision problems, we propose a way to improve the 
recursive way in dynamic programming, which improves 
the unidirectional expansion to a bidirectional expansion 
mode, and finally the two-way expansion will coincide at 
a certain stage of the problem, and the algorithm will end. 
The improved two way expansion dynamic programming 
method and direct one-way algorithm can solve the 
problem, but the time efficiency of two-way expansion 
is better than the one-way recursive method (Wu, et al, 
2014). Some scholars in the scheduling problem with 
dynamic programming method to solve the reservoir, 
the decision problem is a multi - stage into the two stage 
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decision-making problem, diminishing marginal benefit in 
the premise of the reservoir, they analyzed the relationship 
between reservoir storage capacity optimal drainage 
quantity and the optimal, and proposed that reservoir 
operation is monotonous the nature, on the basis of the 
original improved dynamic programming algorithm. The 
experimental results showed that the improved algorithm 
can get the optimal solution of the problem and reduce 
the calculation time. (Jou Jonathan, et al, 2016). In 
practical applications, when there are random factors in 
the multistage decision process, the multistage decision 
process is called a random decision process (Pombeiro, 
Machado and Silva, 2015). The dynamic programming 
method can also deal with the randomness. At this 
moment, the corresponding dynamic programming method 
is called random dynamic programming (Delipetrev, 
Jonoski & Solomatine, 2015). In the stochastic dynamic 
programming, the state of the next stage is not determined 
by the state and the decision of the current stage. The state 
of the next stage will obey a probability distribution. Of 
course, the probability distribution is still determined by 
the state and decision of the current stage. In addition, 
the adaptive dynamic programming and multi-objective 
constrained dynamic programming, and continuous 
dynamic programming have also made great progress. 
(Delipetrev, Jonoski & Solomatine, 2017).

2. METHODOLOGY

2.1 Design of Dynamic Programming Algorithm 
for Public Crisis Processing
The knapsack problem is a classic combinatorial 
optimization problem, which has a wide range of 
applications in many fields, such as cargo loading, 
investment portfolio, feeding problem and so on. The 
knapsack problem is widely used in the field of selection 
based on limited resources. Knapsack problem can be 
described as: given the weight and value of a group of 
goods, what items should be selected to maximize the total 
value of goods within a defined total weight. Knapsack 
problem can be derived from a series of related problems: 
0/1 knapsack problem (only one item), complete knapsack 
problem (items with infinite parts) and multiple knapsack 
problem (goods with finite parts).A dynamic programming 
idea is used to solve the complete knapsack problem 
(multiple knapsack and complete knapsack problem 
similar) and optimization.

First, we can describe the complete knapsack problem. 
For a given n event, the importance of event I is wi, the 

value is vi, each event has infinite parts, and the existing 
knapsack capacity is w. What events should we do to 
make the total value of events in the backpack maximum? 
Describe this problem with mathematical expressions，
F i n d i n g  t h e  n  v e c t o r ),...,,( 21 nxxx ，
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complete knapsack problem is very similar to the 0/1 
knapsack problem, but there are infinite pieces per event 
in the complete knapsack problem. For each event, there 
are only two decisions in the 0/1 knapsack problem: 
choose or not. But in the complete knapsack problem, the 
related strategy of the event is not only two kinds, but 
there are a variety of strategies, such as selecting 0 pieces, 
selecting 1 pieces, selecting 2 pieces, selecting  iww /  

parts. Borrowing the idea of solving the 0/1 backpack 
problem. The sub problem ),( jim  is defined as the 

maximum value of event i based on knapsack capacity j. 
Although there are infinite pieces per event, for a specific 
event, there are still two strategies to put in a backpack or 
no backpack. According to this, we can write the state 
transfer equation:

}0,),,1(max{),( jwxvxwxjimjim iii ≤⋅≤⋅+−−=

（1）
The initial condition of the iteration is：

jwxvxjlm ≤⋅≤⋅= 11 0,),( （2）

This conventional dynamic programming algorithm is 
called NDP(Normal Dynamic Programming)，The 
algorithm flow is shown as shown in the diagram. The 
algorithm (1) shows that：As with the 0/1 knapsack 
problem, the complete knapsack problem also needs to 
calculate the )(nwO  sub problems, but the time for 

calculating each sub problem will no longer be a constant 
time but a )/( iwwO . Therefore, the time complexity of 

the NDP algorithm is ))/(( iwwnwO , and the space 

complexity is )(nwO .
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Figure 1
Classic NDP algorithm flow chart
2.2 Improvement of Dynamic Programming 
Algorithm
For the knapsack problem, the following optimization 
measures can be considered: for two events, i、j, if 

jiji vvww ≤≥ ,  is satisfied,
jiji vvww ≤≥ ,  cannot be 

considered when putting events into knapsack. This 
optimization measure is obviously correct: because in any 
case, the i event will be replaced by a j event with high 
importance and high value, and the total value of the 
backpack will not be reduced. This optimized measure can 
reduce the type of events and speed up the efficiency of 
the algorithm execution. But in special circumstances (that 
is, for any two events, I, J, there is no 

jiji vvww ≤≥ ,  

relationship), No event can be removed at this time, and 
this measure will not optimize the time efficiency of the 
algorithm.

Because the structure of complete backpack is similar 
to that of 0/1 knapsack problem, there is only one event in 
0/1 knapsack, but there are many events in complete 
knapsack, so we can transform the full knapsack into 0/1 
knapsack problem to solve. Due to the limitation of 

backpack capacity, the i event in the complete knapsack 
problem can only be selected at  iww /  times. Therefore, 

the i event can be transformed into the 0/1 knapsack 
problem, and the  iww /  value is wi value vi, and the 

state transition equation is established as follows:
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The initial condition of the iteration is：
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（4）

But the above transformation method does not improve 
the time efficiency of the algorithm. A more efficient way 
of conversion is considered below, and a deduction is 
proved before discussing the specific transformation 
method. So we can deduce that any positive integer n can 
b e  d e c o m p o s e d  i n t o  a  f o r m  o f 
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122...421 1 +−+++= − kk nn  (where k is the largest 

integer that satisfies the 012 ≥+− kn ).Any positive 

integer c,  where ],1[ nc∈  can be represented as: 

)12(1...421 210 +−×++×+×+×= − kkk nxxxxxc , 

where }1,0{∈c . This proves that an arbitrary positive 

i n t e g e r  n  c a n  b e  d e c o m p o s e d  i n t o 
122...421 1 +−+++= − kk nn .The above mathematical 

inference is applied to transform full knapsack into 0/1 
knapsack problem. The former way of transformation is to 
transform I event into  iww /  event, which is wi value 

vi. Due to the establishment of the above inference, the 
transformation of the way is: after the conversion of each 
event value is 

ii vX ⋅ , the importance of 
ii wX ⋅ , where 

iX  is 12/,2,...4,2,1 1 +−− k
i

k ww , this division, the I 

event is divided into  )/(log iwwO  parts, the problem 

can be directly used for 0/1 knapsack problem dynamic 
programming algorithm, the time complexity of the 

p roposed  a lgor i thm fo r  
 )/log(

1
∑
=

n

i
iwwwO .Th i s 

algorithm uses the binary idea to transform the complete 
knapsack problem into the 0/1 knapsack problem and then 
the algorithm is recorded as BDP. We give a brief 
description of the BDP mode. The following is the path 
problem that can be solved by BDP mode. Through BDP, 
we can get various paths between different locations.
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Figure 2
Path problem based on BDP mode

When calculating the sub problem ),( jim , the NDP 

algorithm refers to the states that have been solved in 

 iwjx /= . In this paper, “each state transfer involved 

the state number optimization mentioned: to solve the 
problem with the dynamic programming algorithm is 
virtually the process calculation in the problem definition, 
calculation of the current state is often through solving the 
state and this state has done decision. Therefore, when 
calculating the state of each sub problem, the number of 
states involved in the algorithm will affect the time 
efficiency of the dynamic programming algorithm, and we 
can consider the reduction of the number of states 
involved in each state transfer to optimize the algorithm’s 
time efficiency. By analyzing the state transfer equation 
(1), it is found that when the operator problem ),( jim  is 

considered, the equation refers to every decision 
of  iwjx /,...,2,1,0= . Let  iwjx /=  be analyzed. It is 

found that the sub problem ),( jwjim −  that is solved 

when calculating the sub problem ),( jim  is the maximum 

value of the first i-1 event and the i event of x-1 part based 
on the knapsack capacity

iwj − . The original state 

transfer equation (1) repeats a large number of states 
repeatedly when calculating the state of the sub problem, 
so the state transfer equation can be optimized as follows:





≥≤−
≥+−−

=
i

iii

wjjim
wjvwjimjim

jim
0),1(
},),(),,1(max{
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Based on the original state of the state transition 
equation (1) analysis found that each state transition 
involves a large number of invalid state of state decision 
dependencies, reducing the number of state each state 
transition equation in each state, the state transfer number 
involved is reduced from )/( iwwO  to )1(O ,  the 

algorithm the time complexity of the optimization for 
)(nwO ,  s a i d  t h a t  t h e  a l g o r i t h m  f o r  t h e  O D P 

(Optimization of Dynamic Programming) algorithm, as 
shown in Figure 3. Reducing the number of states 
involved in each state transfer in the algorithm is of great 
significance in the optimization of dynamic programming 
algorithms.
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Figure 3
The flow chart of the ODP algorithm is presented in this article

In multiple knapsack problems, each event is not a 
number of pieces, but a i event has a choice of mi. In 
multiple knapsack, there are only }/,min{ iii wwmx =

decisions for i event: select 0 pieces, select 1 piece, select 2 
pieces, and select xi pieces. The sub problem and the state 
transfer equation of the multiple knapsack problems are very 
similar to that of the complete knapsack problem. Therefore, 
the dynamic programming algorithm and optimization 
measures to solve the complete knapsack problem which 
can also be applied to solve multiple knapsack problems 
after proper modification, so this article will not repeat the 
details of solving multiple knapsack problems.

3. RESULT ANALYSIS AND DISCUSSION
Complete the knapsack problem in order to verify the 
dynamic programming optimization algorithm is correct 
and effective, this section will be randomly generated 
above 5 different types of data sets, so that three kinds 
of dynamic programming algorithm was run 10 times in 
the 5 different types of experimental data sets on average. 
Assuming the capacity of the knapsack W=1000 is to 
intuitively observe the time efficiency of the algorithm 
under various scale data sets, the following are illustrated 
in the form of graphs and tables.

Table 1
Operation Time/ms of the Algorithm When the Weight of the Item is in [150200) and [1200)

Scale
NDP BDP ODP NDP BDP ODP

[150,200) 1,200)
100 115 70 54 119 69 56
200 233 138 111 233 146 116
300 344 209 170 358 221 169
400 466 280 221 475 294 228
500 574 354 281 5 85 358 282
600 693 416 335 715 446 350
700 810 487 392 833 508 413
800 921 556 448 984 604 474
900 1035 628 506 1063 654 529

1000 1148 698 560 1147 709 563
1100 1254 772 611 1258 778 617
1200 1365 838 661 1366 840 664
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The running time of the algorithm when the size of the problem is different (the weight of the item in the [1200)
distribution

From Table 1 and Figure 4, we can analyze from the 
following two aspects: first, the influence of the importance 
of events on the running time of NDP algorithm and BDP 
algorithm when solving the complete knapsack problem. 
The above experimental results show that when the two 
algorithms are used to solve the complete knapsack problem 
with different data classes (the importance distribution 
of events), when the importance of events increases, the 
time efficiency of algorithm will be improved accordingly. 
From Figure 5, we can see that when we solve the 
complete knapsack problem of the same data size, when the 
importance distribution of events is from [1,50 to [50100, 
[100150 to [1_50200, there will be some differences in 
the time efficiency between NDP and BDP algorithm. For 
example, when the number of events is n=100, the running 
time of NDP algorithm is from 1390ms, 241ms, 153ms to 
11_Sms, and the running time of BDP algorithm has the 
same decreasing trend from 188ms, 116ms, 89ms to 70ms, 

and other data sizes. To further demonstrate this conclusion. 
we increase the importance distribution range of events 
from [1,10, [10,20, [20,30 to [190200, and then measure the 
running time of the algorithm separately, as shown in the 
table. In the table, the number of events was 1000, when the 
importance of the event distribution in [[1,10), long running 
NDP and BDP algorithm, respectively 4_5283ms and 
2772ms, and with the distribution range of the importance 
of events gradually increased, the running time of the two 
algorithms will be decreasing, when the importance of 
the event distribution in [[190200), running time of NDP 
algorithm and BDP algorithm are respectively 119_Sms 
and 748ms. We also observed the relationship between 
the running time of the algorithm and the importance 
distribution of events. The results show that when the 
importance of events becomes larger, the running time of 
NDP and BDP algorithms is decreasing when solving the 
same size full knapsack problem.
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the time efficiency of the algorithm
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The time complexity of the conventional dynamic 
programming algorithm, NDP, is directly dependent on 
the distribution of the importance of the event, as shown 
in formula (1). The BDP algorithm uses the binary idea 
to transform the complete knapsack problem into a 0/1 
knapsack problem and then solve it again. While the size 
and importance of the event will affect the capacity of the 
knapsack that each event can be times into the backpack, 
which influence the problem into the total number of 
0/1 knapsack problem after the event, and the dynamic 
programming algorithm for 0/1 knapsack problem time 
complex number degree and is directly related to the event. 
Therefore, in the BDP algorithm, the efficiency of the 
algorithm is related to the distribution of the importance 
of the event. The ODP algorithm proposed in this paper is 
based on the NDP algorithm to reduce the number of states 
that each state transfer depends on. The time efficiency 
of algorithm is not directly related to the importance of 
events. Therefore, the optimized algorithm ODP shows 
basically consistent performance in multiple tests with the 
same data size and different importance distributions.

The second aspect is the difference in time efficiency 
between different dynamic programming algorithms 
(NDP, BDP and ODP algorithm proposed in this paper) 
in solving the complete knapsack problem with the same 
data size and same data size. From Table 1, we can see 
that the number of events in the table indicates that the 
number of events remains unchanged, and the importance 
distribution of events increases sequentially, which affects 
the efficiency of various algorithms. We can compare 
with each table in the transverse, then we can found that 
regardless of the importance of the event distribution, this 
paper presents the ODP algorithm in time efficiency than 
the time and efficiency of NDP and BDP algorithm, the 
number of cases when the event n=100, the importance 
of events in [1, _50) randomly distributed, NDP, running 
time of BDP algorithm and ODP algorithm respectively. 
1390ms, 188ms and _59ms; when the importance of the 
event in [1_50200) randomly distributed, the running 
time of the three algorithms are 115ms, 70ms and _54ms; 
when the importance of the event in [[1200) randomly 
distributed, the running time of the algorithm are 
119ms, 69ms and _56ms, these three kinds of situations, 
compared ODP algorithm and NDP algorithm and BDP 
algorithm, the time efficiency is high, and the importance 
of NDP and BDP algorithm’s efficiency depends on the 
incident, but the ODP algorithm in the event importance 
range, algorithm show stable performance. The vertical 
row in the table indicates the distribution of the 
distribution of the importance of the event, and the effect 
of increasing the number of events on the time efficiency 
of the algorithm. From the table, we can see that when the 
number of events increases, the running time of the three 
algorithms will increase, but in the same event scale, the 
running time of ODP algorithm is still smaller than the 
running time of NDP and BDP algorithm. It is shown that 

the time efficiency of ODP algorithm is higher than that of 
NDP and BDP algorithm when the number of events and 
the capacity of the knapsack change simultaneously in the 
complete knapsack problem.

In general, the BDP algorithm is higher than NDP time 
efficiency of the algorithm, because the BDP algorithm 
will be completely transformed into the knapsack problem 
0/1 knapsack problem using the binary thinking, thus 
reducing the number of events after transformation and 
NDP algorithm can be understood as the problem of direct 
conversion. The proposed ODP algorithm is based on the 
analysis of the conventional NDP algorithm, found each 
state transition involves a large number of invalid state 
of state effective decision dependencies, reducing the 
number of state each state transition, which improves the 
time efficiency.

CONCLUSION
With the rapid development of social media, the speed 
of events spread faster and the public relations crisis 
is more prone. Based on this, this paper studies the 
public crisis management measures based on dynamic 
programming algorithm by using computer technology. 
First, a conventional dynamic programming algorithm 
RDP for solving 0/1 knapsack problem is presented. Then, 
by restricting the upper and lower bounds of the state in 
the RDP algorithm, the number of states that needs to be 
calculated is reduced, and the improved EDP algorithm is 
obtained. Then, it discusses the complete solving knapsack 
problem of general dynamic programming algorithm with 
binary NDP and ideas will be completely transformed 
into the knapsack problem 0/1 knapsack problem and 
then solve the BDP algorithm, through the analysis of 
the conventional NDP algorithm, each state transition 
in the discovery process involving a large number of 
invalid state, ODP algorithm analysis of effective state the 
decision dependencies are optimized, the ODP algorithm 
reduces the number of state each state transfer, improve the 
time efficiency of the algorithm. Finally, experiments are 
given to show the time efficiency of different algorithms in 
solving the same data size knapsack problem. Experimental 
results show that the improved algorithm proposed in this 
paper has higher time efficiency.
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